ROGEL GARCIA DE OLIVEIRA

AN OBJECT-BUSINESS PROCESS MAPPING

FRAMEWORK

Dissertation presented to the Graduate
Program in Computer Science of the Uni-
versidade Federal de Minas Gerais in par-
tial fulfillment of the requirements for the
degree of Master in Computer Science.

ADVISOR: MARCO TULIO DE OLIVEIRA VALENTE

Belo Horizonte

March 2013

©

2013, Rogel Garcia de Oliveira.
Todos os direitos reservados.

0480

Oliveira, Rogel Garcia de.
An Object Business Process Mapping Framework /
Rogel Garcia de Oliveira. — Belo Horizonte, 2013
xix, 92 f. : il. ; 29¢m

Dissertagao (mestrado) — Universidade Federal de
Minas Gerais . Departamento de Ciéncia da
Computacao.

Orientador: Marco Tilio de Oliveira Valente

1. Computagao - Teses. 2. Engenharia de software -
Teses. 3. Negocios - Processamento de dados - Geréncia -
Teses. 4. Framework (Programa de computador) - Teses.
I. Orientador. II. Titulo.

CDU 519.6*32 (043)

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE (;II:ZNCIASAEXATAS
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

FOLHA DE APROVACAO

Um framework para mapeamento entre objetos e processos de negdcios (An
object-business process mapping framework)

ROGEL GARCIA DE OLIVEIRA

Dissertacfo defendida e aprovada pela banca examinadora constituida pelos Senhores:

PROE. CLARINDO ISAIAS P. DA SILVA E PADUA

Dcpartalﬁde Ciénclia da Com%xtaiﬁo - UFMG
=< : o — Pk

= PROF. SERGIO TELO BRANCO SOARES

Belo Horizonte, 19 de mar¢o de 2013.

Acknowledgments

Terminar um mestrado requer bastante esforco, nao apenas do aluno, mas de todos
os professores presentes na vida académica. Pois, o mestrado, comecou la atrés, na
alfabetizacao. Foram muitos professores que dispuseram de seu tempo e esforco para
que o conhecimento acumulado se transformasse na formacao de um mestre. Por isso,
presto uma homenagem e agradeco a todos os professores que passaram pela minha
vida, e nao foram poucos.

Agradeco especialmente ao professor Marco Tilio, que me apoiou e guiou desde
o primeiro momento em que decidi fazer mestrado. Ele sempre foi atencioso e prestou
uma ajuda fundamental nesses dois anos de trabalho.

Agradeco também ao meu pai e minha mae, que sempre foram bastante atentos
aos meus estudos e sempre apoiaram e se esforcaram para que eu tivesse um ensino
de boa qualidade. Tenho também que mencionar o meu tio Branco, que teve uma
participacao fundamental para minha graduacao e sem ela nao chegaria a essa etapa.

Agradeco aos meus chefes e amigos Cristiano e Gilberto, que entenderam a im-
portancia dessa etapa em minha vida e permitiram que eu estudasse mesmo trabal-
hando. Agradeco também ao Marcus, que sempre me deu uma forca enorme e confianga
para a realizacao dos meus trabalhos.

Para finalizar, agradeco a todos os amigos e familiares e namorada que completam
a base de apoio. Eles oferecem a companhia o divertimento e a distracao para os

diversos momentos da vida.

X

Resumo

Sistemas de informagao dependem cada vez mais de modelos, notagoes e gerenciadores
de processos para representar e executar regras de negbécio. Entretanto, a integracao
entre os componentes de sistemas de informacao e os atuais Sistemas Gerenciadores
de Processos de Negocio (do inglés Business Process Management Systems, BPMS) é
geralmente baseada em interfaces de programacgao de baixo nivel que expoem diversas
complexidades acidentais, tipicas de implementacoes de processos de negocio. Para
tratar esse problema, esta dissertacao de mestrado descreve o projeto e implemen-
tacao de um framework de mapeamento, chamado NextFlow, que disponibiliza regras
para associacao entre conceitos de alto nivel de processos e abstragoes tipicas de sis-
temas orientados a objetos. Nesta dissertacao, também descreve-se uma avaliacao de
uso do framework NextFlow em um pequeno sistema de informacao, incluindo uma
comparacao com uma segunda implementacao que utiliza diretamente as interfaces de

programacao providas pelo sistema jBPM, um BPMS bastante conhecido.

Palavras-chave: Processos de negocio, Workflow, Programacao orientada a objetos,

Frameworks de Mapeamento.

x1

Abstract

Information systems increasingly rely on business process models, notations, and en-
gines to represent and execute complex business rules. However, the integration be-
tween information system components and current Business Process Management Sys-
tems (BPMS) is usually based on low-level programming interfaces that expose acciden-
tal complexities typical of business process implementations. To tackle this problem, we
report in this dissertation the design and implementation of a mapping framework
called NextFlow—that provides a binding between high-level business concepts and
object-oriented abstractions for communication with BPMS. We evaluate the use of
NextFlow in a small-scale but representative information system, including a compar-
ison with a second implementation of this system solely based on the programming
interface supported by jBPM, a well-known BPMS.

Keywords: Business Process, Workflow, Object-Oriented Programming, Mapping
Framework, Integration, BPMS, WfMS.

xiil

List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4

A business process represented in a graphical language 3
jBPM Form

Providing code in property boxes 5
BPMN Diagram 12
BPMN Basic Events 13
BPMN Activities e 13
BPMN Gateways 13
BPMN Connectors e 14
WIMC Interfaces 17
Integrating information systems and BPMS with NextFlow 24
Proposed approach for integrating IS and BPMS 24
Example of Process Definition 26
Loan Process Definition 28
Mapping a loan process to an interface 28
Mapping an external task to an interface method 29
NextFlow architecture, 35
Interfaces provided by the WFC API 38
Architecture of the Workflow Connectivity Layer 39
Sequence diagram for getting sessions L. 42
Architecture of the Object-Workflow Mapping Layer 45
Architecture of the callback implementation 54
Charging System basic workflow 60
Process definition for the Charging System 61
Different screens of the user cell phone interface 63
Components of the jBPM process system 65

XV

5.5
5.6
5.7
5.8
5.9

Variable declaration using jBPM graphical interface 68

Task behavior implementation in property boxes 69
Components of the NextFlow process system 72
Mapping result parameters to process variables in jBPM 79
Split activity (verify authorization) configuration in jJBPM 82

XVvi

Contents

Acknowledgments ix
Resumo xi
Abstract xiii
List of Figures XV
1 Introduction 1
1.1 Motivation 1
1.1.1 BPMS Overview 2

1.1.2 Problem Description 4

1.2 Summary of Goals 6

1.3 Organization e 7

2 Related Work 9
2.1 Business Process Languages and Provided APIs 10
2.1.1 BPEL 10

2.1.2 BPMN 12

2.1.3 PetriNets 15

2.2 Standards 16
2.2.1 Workflow Client API 17

2.3 Object-Oriented Business Process 18
2.3.1 MicroWorkflow 19

2.3.2 WebWorkFlow, 19

2.4 Object-Relational Mapping 19
2.5 Concluding Remarks 21

3 Proposed Solution 23

xvil

3.1 NextFlow in a Nutshell

3.2 NextFlow Business Process Model
3.2.1 Model Specification

3.3 Mapping Business Processes to Object-Oriented Abstractions
3.3.1 Mapping a Process and its Tasks
3.3.2 Data
3.3.3 Callbacks

3.4 Concluding Remarks

Architecture

4.1 Workflow Connectivity Layer
4.1.1 WFCAPI
4.1.2 WFCSPI e
4.1.3 WorkflowManager and Session Components
4.1.4 WEFC application agents

4.2 Object-Workflow Mapping Layer
4.2.1 Overview

4.2.2 Associating Business Processes to Object-Oriented Elements . .

423 OWMAPL.
4.2.4 Implementing Process Interfaces
4.2.5 Creating Classes at Runtime
426 Callbacks
4.3 Concluding Remarks oL oo
Evaluation
5.1 Target System
5.2 Process Definitiono
5.3 Charging System Architecture 0L,
5.4 Direct BPMS Accesso
5.4.1 Process System with jJBPM 0000
5.4.2 Dispatching Messages to the jJBPM Engine
5.4.3 Providing Data oo
5.4.4 Providing Behavior00
5.5 BPMS Access with NextFlow
5.5.1 Process System with NextFlow
5.5.2 Dispatching Messages using NextFlow
5.5.3 Providing Data o0

35
36
36
38
41
43
44
45
46
48
50
23
04
57

62

5.5.4 Providing Behavior oo o000
5.6 Comparing NextFlow and Direct BPMS Access Implementations

5.6.1 Creating a Connection with the Business Process Engine

5.6.2 Starting a New Process
5.6.3 Checking the Owner of the Process
5.6.4 Executing Tasks oo
5.7 Threats to Validity
5.8 Concluding Remarks

6 Conclusions
6.1 Contributions

6.2 Comparison With Related Work
6.2.1 Business Process Languages and APIs
6.2.2 API Standards
6.2.3 Object-Oriented Business Process Abstractions

6.3 Further Work

Bibliography

XiX

)
75
76
7
78
83
83

85
85
86
87
87
88
88

89

Chapter 1

Introduction

1.1 Motivation

Modern information systems rely on object-oriented programming languages, libraries,
and frameworks to provide gains in productivity and quality. Typically, their classes
are organized in layers that represent some functionality. For example, usually there is
a layer that responds for user interface concerns (presentation layer) and another layer
for persistence (data source layer). The business rules, implemented in a layer called
domain, include data structures to represent the business information, validations,
calculations, and the business workflow |Fowler, 2003].

On the other hand, with the increasing need for better processes, specialized
software solutions were created to deal with the business workflow of an information
system. This category of software is called Business Process Management System
(BPMS) [Aalst, 1998; Smith and Fingar, 2003]. A BPMS is a generic software tool
that allows the definition, execution, registration, and control of business processes
[Lawrence, 1997|. Therefore, a BPMS is not necessarily a full-stack implementation
of an information system product. Instead, it can complement an information system
with components that handle the business part of the system requirements, just like a
Database Management System (DBMS) handles the data part.

Information systems, in order to delegate work to BPMSs, must establish a com-
munication with the underlying BPMS engine. However, BPMSs have some character-

istics that hamper this integration as described next:

e BPMSs and information systems have been proposed and evolved under different
paradigms. Cardoso et al. [2004] state that the “technological approach and

features of solutions provided by BPMS and information systems are different”.

1

2 CHAPTER 1. INTRODUCTION

e BPMS architectures have not been designed to be integrated with information
systems. Instead, BPMS architecture “are monolithic and aim at providing full-
fledged support for the widest possible application spectrum” [Muth et al., 1999],
an assumption that is shared with other authors [Alonso et al., 1997; Manolescu,
2001; Cardoso et al., 2004; Youakim, 2008|. This kind of architecture means
that BPMSs usually provide implementations for concerns that should not be

addressed by this category of software, for example user interface concerns.

e Lack of standardization. “Good standards for business process modeling are
still missing and even today’s workflow management systems enforce unnecessary
constraints on the process logic” [Aalst et al., 2003]. Some authors argue that
this kind of software is immature, “it remains an area that is not yet dominated
by any particular vendor or standards initiative” [Wohed et al., 2009]. This lack
of standards results in difficulties when integrating BPMSs with other software

systems, as the APIs and semantics behind them are usually different.

The mentioned characteristics makes the integration between information systems
and BPMSs harder. The remainder of this section provides an overview on BPMS
concepts and components. After that, the current problems faced when integrating

BPMSs with information systems are discussed in more detail.

1.1.1 BPMS Overview

A BPMS is a tool that enables the definition and execution of business processes
[Aalst, 1998; Smith and Fingar, 2003; Vergidis et al., 2008|. Typically, a BPMS has

the following components:

e A modeling notation, usually based on a graphical language, that enables the

definition of a process.

e An execution engine, that executes processes modeled using the aforementioned

notation.

Figure 1.1 shows a diagram that represents a business process. It can be described
as a directed graph, where the nodes represent work units and the edges represent the
order that must be followed. The business process engine executes the work associated
to each node in the sequence specified by the edges in the process. There are various

business process languages, each one with its own specification.

1.1. MOTIVATION 3

,—{ 29 Project Manager Evaluation J—¥
O # Self Evaluation <*> @—» @
I——[# HR Manager Evaluation J—’

Figure 1.1. A business process represented in a graphical language

The central element of a business process, present in all business process lan-
guages, is a node that represents a task. Some authors define a business process as
a sequence of tasks that must be executed in a given order to achieve some objec-
tive [Havey, 2005]. An example of business process can be the shipping of products
to a customer. This process has tasks like check inventory, select items and dispatch
products.

After designing the business process, its execution can be delegated to a business
process engine. This engine reads and interprets the process and controls its execution.
In summary, when a node is available for execution it is executed by the business process
engine. The execution of a node triggers some functionality associated to it. When the
node is a task, it is the business process creator that defines the functionality that must
be executed. Using the shipping products process as example, the check inventory task
may have an associated service to check whether the inventory has enough products.
This service is implemented in a given programming language and associated to the
task using the features provided by the BPMS. If the task is successfully completed,
the business process engine executes the next node available for execution. Typically,
business process languages provide special nodes to denote the start and the end of a
process, and others to define parallelism and synchronization of tasks.

There are several BPMS implementations, each with its own syntax and seman-
tics. As examples, we can mention jBPM that uses the BPMN notation [OMG, 2011]
and YAWL that uses Petri-Nets [Aalst and Hofstede, 2005|. This fact is a consequence
of the aforementioned lack of standardization among BPMS solutions [Hofstede et al.,
2009|. There are groups like the Workflow Management Coalition (WfMC), which
provides a reference for workflow standards [Smith and Fingar, 2003; Youakim, 2008].
However, most BPMS implementations do not completely comply with the WIMC
specifications |Borger, 2011]. There are also solutions originated from the software in-
dustry. For example, IBM and Microsoft combined their process languages and created
the Business Process Execution Language (BPEL) [Jordan et al., 2007|. Initially de-
veloped by the Business Process Management Initiative (BPMI) consortium and later
continued by the Object Management Group (OMG), the Business Process Model and

4 CHAPTER 1. INTRODUCTION

Notation (BPMN) is a graphical language used by a variety of BPMSs [OMG, 2011].
Also, there are business process languages based on Petri Nets |[Aalst and Hofstede,
2005].

1.1.2 Problem Description

There are two ways to use a BPMS. The first way relies on the standalone features
provided by BPMSs to implement and deploy a complete information system. The
second way is to use a BPMS to handle the business workflow implemented by the
domain layer of an information system.

The use of BPMSs as a full-fledged information system has limitations [Muth
et al., 1999]. For example, modern information systems usually depend on rich user
interfaces, persistence mechanisms, and robust software architectures. Using a BPMS
in the way described before is not appropriate. For example, Figure 1.2 shows and
example of an interface that contains a form to be filled by an end-user. This form,
which is provided by the BPMS, lacks features like field validation and formatting,
navigation mechanisms, or rich user interface components. Also, to customize this
interface, it is necessary to use the resources provided by the BPMS. It is not possible
to use, for example, modern and widely used frameworks, like Spring or Java Server
Faces (JSF).

Another problem faced when using a BPMS happens when implementing task
functionality. This is usually performed by inserting code in specific elements of the
business process definition, often in property boxes [Hemel et al., 2008|. Figure 1.3
shows an example of code defined using the property boxes of a BPMS. In this case,
the BPMS takes control of the application and provides limited extension points to be
defined by programmers.

For the reasons explained, we are not considering this scenario in this master
dissertation. Instead, our focus are software projects where the BPMS should be inte-
grated with existing information system architectures. In other words, we consider that
an information system has its own programming language, libraries, and architecture.
We assume that BPMSs should be responsible only for executing business workflows,

otherwise implemented by an information system’s domain layer.

1.1.2.1 BPMS integration with Information Systems

The integration of a BPMS with the components of an information system using the
current technology presents some challenges. To start, the implementation of task

behavior in property boxes is not completely eliminated.

1.1. MOTIVATION

I “.. BPM Console L

& Kkrisv Logout
Tasks

2. Personal Tasks

2, personal Tasks

ﬁGroupTasks Refresh J View J Release l
iy Teocess [TaskName Jowedme |

- 0OXx
Task Form: Performance Evaluation

Employee evaluation

Please perform a self-evalutation.

ﬂ _» Please fill in the following evaluation form:

Rate the overall performance: | outstanding :

Task defail
ID: Check any that apply:
Process []Displaying initiative

Processes Name: Thriving on change

Reporting Assignee:] Good communication skills
Descriptior

Seftings

:

Figure 1.2. jBPM Form

= Action editor M
Dialect: [java v] [Imports] [Globals]

Textual Editor |

Integer availableCredit = chargingManager.getCreditFor(from);
if(availableCredit > value){

kcontext.setVariable("enoughtCredit”, true);
¥

[OK] [Cancel

Figure 1.3. Providing code in property boxes

Moreover, it is necessary to import BPMS APIs. For this reason, the integration
with a new BPMS platform usually requires learning a completely new API. Addi-
tionally, it is harder to change a BPMS engine with another one, causing a BPMS

6 CHAPTER 1. INTRODUCTION

implementation dependency. Finally, current BPMS APIs require the application code
to import not only elements that represent low-level architectural details of a BPMS,
but also elements that represent accidental complexities typical from business processes
Borger [2011]. For example, developers usually need to manipulate elements like tasks
and nodes, which are not part of the business semantics. References to such elements
make the implementation of information systems more complex. In this master dis-
sertation, we ague that information system code should only handle business process

concepts and not the low-level elements of process definitions.

1.2 Summary of Goals

To tackle the integration problems presented in the previous section we propose in this
master dissertation a solution, called NextFlow, designed to attend to the following

requirements:

e NextFlow should allow information systems to be oblivious about low-level ar-
chitectural details of a given BPMS. This requirement also includes accidental

complexities typical from business process implementations, like tasks and nodes.

e NextFlow should be independent from BPMS implementation, therefore allowing
the change of BPMS engines.

e NextFlow should provide ways to execute tasks, to implement task behavior and

to manipulate data from business processes.

e NextFlow should allow the information system to maintain the main control flow

of the system.

e NextFlow should not require modifications in modern software architectures fol-

lowed the implementation of information systems.

More specifically, we aim to provide a solution for the integration between in-
formation systems and BPMSs that attend the mentioned requirements. This central
goal will be achieved by representing elements of a business process as object-oriented
elements that are oblivious on the internal details of BPMSs. NextFlow should man-
age such elements and coordinate the communication between them and the BPMS
engine in a way that is transparent to the information system. Therefore, NextFlow
should provide independency of BPMS implementation while keeping the traditional

architecture of the information system.

1.3. ORGANIZATION 7

NextFlow should expose interfaces to the information system that only contain
business semantics. For example, in an electronic commerce system, the interface
exposed by our solution should contain checkout, add product, and list cart elements.
Different from the interfaces provided by current BPMSs that expose elements like
tasks, nodes, and processes.

NextFlow can be classified as a object-business process mapping framework that
provides a binding between high-level business concepts and object-oriented abstrac-
tions for communication with BPMS. It is worth to mention that in the relational
databases domain, there are established mapping frameworks that provide similar func-
tionality. These solutions are called object-relational mapping (ORM) frameworks, and
their most popular representative is Hibernate!. ORM frameworks work by mapping
elements of relational databases to object-oriented elements of the information system.
Although DBMS and BPMS have different paradigms and functions, we argue that
mapping framework for BPMSs can share and borrow many ideas from established

and widely used ORM frameworks.

1.3 Organization

The remainder of this master dissertation is organized in the following chapters:

e Chapter 2 describes other works related to the NextFlow solution. In this chap-
ter, we discuss existing BPMS standards, different BPMS implementations, and

existing solutions for the integration problems tackled in this master dissertation.

e Chapter 3 presents the fundamental ideas that form the NextFlow solution. In
this chapter, an abstract model to represent different business process notations
is presented. After that, a set of rules to map business processes, created with
elements from the proposed abstract model, to object-oriented elements are de-
fined.

e Chapter 4 presents an in-depth analysis of NextFlow solution, its components and
architectural organization. This chapter explains the NextFlow implemented ar-
chitecture, describing the responsibility of the components that form the solution

and how they are used.

e Chapter 5 evaluates and compares two implementations of the same information

system, one using NextFlow and another using direct BPMS access. The current

!'www.hibernate.org

CHAPTER 1. INTRODUCTION

problems faced in the integration between information systems and BPMSs are
exposed using a complete implementation of this target information system. After
that, a comparison of the implementations is presented, highlighting the aspects
that make NextFlow a more suitable solution to integrate existing information
systems with BPMSs.

Chapter 6 presents the conclusions and contributions of this work. This chapter

also suggests future developments and improvements in our current solution.

Chapter 2

Related Work

The mapping framework proposed in this master dissertation aims to provide a solution
that: (a) acts as an interface between BPMS and information systems; (b) promotes
independency of BPMS implementation; (c) relies on object-oriented abstractions; (d)
provides a mapping between elements of different domains.

In our research, we have not found a unique solution that contains the four basic
features of the solution investigated in this master dissertation. For this reason, in this
chapter we analyze individual aspects provided by solutions described in the literature.
More specifically, we divided the work related with the solution investigated in this

master dissertation in four sections:

1. Business Process Languages and Provided APIs. In this section, we investigate
the available business process modeling languages, with focus on the APIs they

provide for communication with information systems.

2. Standards Proposals. In this section, we present standardization efforts aiming
to create a common API for interoperability between BPMS and information

systems.

3. Object-Oriented Business Process. In this section, we present previous work

proposing object-oriented abstractions to manipulate business processes.

4. Object-Relational Mapping. In this section, we present an overview of the cur-
rent frameworks that provide a binding between relational database systems and

object-oriented abstractions.

10 CHAPTER 2. RELATED WORK

2.1 Business Process Languages and Provided APls

We can divide the existing business process solutions in four main notations: BPEL
[Jordan et al., 2007|, BPMN |[OMG, 2011], Petri Nets |Peterson, 1977] and Pi-Calculus
[Smith and Fingar, 2003|. However, Pi-Calculus is basically a theoretical model

[Puhlmann, 2006|, and therefore will not be discussed in this section.

2.1.1 BPEL

BPEL (Business Process Execution Language) is an XML language that supports the
execution of business process specifications [Jordan et al., 2007]. BPEL assumes that
each business process work unit provides a Web Services interface |Havey, 2005|. Listing
2.1 shows a BPEL process specification. This example defines a workflow that receives
a message (lines 33-37), copy its contents to another variable (lines 40-53), and sends
the message by e-mail using another service (lines 56-59). The web services involved
in this process are defined as partners (lines 9-18). Moreover, the variables used in the
process are defined using variables tag (lines 21 26). The web services configurations

and the variables type specification are provided in a separate WSDL file.

1 <process name="MessageProcess"

2 targetNamespace="http://example.com/bpel/messagebpel/"
3 xmlns="http://schemas.xmlsoap.org/ws/

4 2003/03/business -process/"

5 xmlns:msg="http://example.com/bpel/message/"

6 xmlns:email="http://example.com/bpel/email/">

7

8 <!-- Partners 1in the process -->

9 <partnerLinks>

10 <partnerLink name="messageService"

11 partnerLinkType="msg:messagelLT"

12 myRole="messageReceiver" partnerRole="messageSender"/>
13 <partnerLink name="emailService"

14 partnerLinkType="email:emailLlLT"

15 myRole="emailClient" partnerRole="emailServer"/>

16 </partnerLinks>

17 <V-- Variables to hold message and ema:l data -->

18 <variables>

19 <variable name="Message" messageType="msg:MessageRequest"/>

20 <variable name="Email" messageType="email:EmailMessage"/>

2.1. BUSINESS PROCESS LANGUAGES AND PROVIDED APIs 11

21 </variables>
22
23 <!-- Workflow configuration -->

24 <sequence>

25 <V-- Receive the imitial request

26 from message service -->

27 <receive partnerLink="messageService"

28 portType="msg:MessagePT"

29 operation="SendMessage"

30 variable="Message"

31 createlnstance="yes" />

32 <! -- Prepare the input for the Email Service -->
33 <assign>

34 <copy>

35 <from variable="Message" part="subject"/>
36 <to variable="Email" part="to"/>

37 </copy>

38 <copy>

39 <from variable="Message" part="message"/>
40 <to variable="Email" part="contents"/>

41 </copy>

42 <copy>

43 <from>E-mail message from BPEL WS</from>
44 <to variable="Email" part="subject"/>

145 </copy>

16 </assign>

47 <!-- Synchronously invoke the Email Web Service -->
48 <invoke partnerLink="emailService"

49 portType="email :EmailPT"

50 operation="SendEmail"

51 inputVariable="Email" />

52 </sequence>

53 </process>

Listing 2.1. BPEL specification defining a message redirection workflow

Basically, a BPEL program specifies the partners that participate in the process,
the variables that are used, and an activity. An activity can be a group of other
activities, such as the sequence activity (line 29 in the example), or the flow activity.

There are also control flow activities like while and switch. And finally, there are

12 CHAPTER 2. RELATED WORK

activities to interact with web services like receive, pick, invoke, and reply.

By using BPEL, the integration with other systems is performed using web ser-
vices, which allows the interoperability between systems using different technologies.
However, this benefit comes at the cost of deploying each work unit as a web service,
which involves a considerable overhead. It is possible that the work unit is so simple
that the implementation of its web service interface will be more expensive than the
implementation of the work unit itself. For this reason, some researchers argue that
BPEL is more suitable to orchestrate the execution of coarse-grained workflows, for ex-
ample between a hotel booking system and an airline flight system [Aalst and Lassen,
2005]. BPEL suppliers include Oracle BPEL Process Manager', IBM WebSphere Pro-

cess Server?, Microsoft BizTalk Server? and SAP Exchange Infrastructure®.

2.1.2 BPMN

BPMN (Business Process Modeling Notation) is a graphical notation to describe busi-
ness process [OMG, 2011]. Tt was initially created by the Business Process Manage-
ment Initiative (BPMI) and is currently supported by the Object Management Group
(OMG). The OMG is an open group that creates and maintains specifications for the
computer industry, like CORBA and UML?.

In many aspects, BPMN resembles a flowchart notation. Its main objective is
to provide a standard language for workflow modeling while being comprehensive by
business participants. The participants include business analysts that create and refine
processes, technical developers responsible for implementing the process and managers
that monitor and supervise the processes [Havey, 2005|. Figure 2.1 shows an example

of BPMN diagram that models a customer order process.

3 . .
8 P ool @ Send Invoice @ Process @ R":QISH:T Otfd_er in
repare Invoice G e —».—» Payment anufacturing
System
p/ Customer
Answer

J [Invoice needs to be updated]

Update |

Figure 2.1. BPMN Diagram

Thttp://www.oracle.com /technetwork /middleware /bpel /overview /index.html
http:/ /www-01.ibm.com /software/integration /wps/

3http:/ /www.microsoft.com /biztalk /en /us/default.aspx

4http://www.sap.com /brazil /platform /netweaver /exchangeinfrastructure /index.epx
http://www.omg.org/

2.1. BUSINESS PROCESS LANGUAGES AND PROVIDED APIs 13

BPMN provides a set of graphical elements that allow the definition of workflow
diagrams. These elements are distributed in four categories: flow, connection, pools,
and artifacts [Havey, 2005].

The flow elements are the main elements in a BPMN diagram and are directly
connected to the business flow. The members of this group are events, activities, and
gateways. Events, represented by circles, are elements that trigger a business process.
Events are categorized by the stage at which they occur (begin, intermediate, and end)
and by their type (basic, message, timer, etc). Figure 2.2 shows the three basic types
of events: start (thin border), intermediate (double border) and end (thick border).
The combination of the stage and type of the events results in more than 20 specific

events constructs.

O O O

Start Intermediate End

Figure 2.2. BPMN Basic Events

The activities describe the work that must be executed within the flow. They are

represented by rounded corner rectangles as shown in Figure 2.3.

[Tack J [Proce;ls @]]

Figure 2.3. BPMN Activities

In a typical business process, the flow of work can be split and joined. The
splits and joins are represented in a BPMN diagram using gateways. Figure 2.4 shows

examples of different types of gateways.

Gateway Fork/Join Inclusive Decision/Merge

Figure 2.4. BPMN Gateways

Complementary to the flow elements, there are connections elements, which
connect flow elements. The connection objects can be sequence, message or association,

as illustrated in Figure 2.5.

14 CHAPTER 2. RELATED WORK

>

Sequence Flow

o ———=——-—-p

Message Flow

Association

Figure 2.5. BPMN Connectors

The pools and artifacts elements have an organization purpose instead of a flow
definition. For example, they can represent users responsibility, comments, and flow
documentation.

BPMN specification cover many aspects of business processes modeling, including
fine-grained constructs. However, BPMN also defines some elements that have only a
conceptual model. In other words, such elements do not include the necessary details
to be executed by a system. As an example, we can mention the ManualTask and
Ad-Hoc Process elements [OMG, 2011]|. As a result of this lack of formal definition for
some elements, BPMN tools usually implement only part of its specification and they
can have different behaviors for the same element [Borger, 2011; Aalst et al., 2011].
Finally, BPMN does not provide a reference API, and therefore each tool has its own
proprietary implementation.

Listing 2.2 shows a source code to connect to jJBPM (a popular BPMN implemen-
tation) extracted from its documentation®. In this code, only API elements specific
to the jBPM engine are used. This fact implies that the change of jBPM to another
BPMS will require a change in the code of the information system (even if the new
BPMS is also based on BPMN).

1 // load up the knowledge base
2 KnowledgeBuilder kbuilder =

3 KnowledgeBuilderFactory.newKnowledgeBuilder ();
4 Resource r = ResourceFactory.newClassPathResource ("Eval.bpmn");
5 kbuilder.add(r, ResourceType.BPMN2);

6 KnowledgeBase kbase = kbuilder.newKnowledgeBase ();

7 StatefulKnowledgeSession ksession =

8 kbase.newStatefulKnowledgeSession ();

Shttp://docs.jboss.org/jbpm /v5.4/userguide /ch.core-api.html

2.1. BUSINESS PROCESS LANGUAGES AND PROVIDED APIs 15

10 // start a new process instance

11 Map<String, Object> params = new HashMap<String, Object>();
12 params.put("employee", "krisv");

13 params.put("reason", "Yearly performance evaluation");

14 ksession.startProcess("com.sample.evaluation", params);

Listing 2.2. Code to create a connection to the jBPM engine

After an in-depth analysis, we concluded that current BPMS exposes APIs that
are very specific of each tool. For example, the API provided by jBPM has classes like
KnowledgeBase, ProcessContext, and Node, which are specific to the jBPM domain.
Moreover, the mentioned classes expose accidental complexities of the underlying no-
tation used. For example, the Node class represents a node in the business process
specification. A client information system using this API will have to manipulate this
kind of data, which is not directly related to the business process under implemen-
tation. Furthermore, other BPMN implementations provide a different API with a
different class to represent the same node concept. Finally, besides exposing accidental
complexities, the mentioned classes also expose internal details of the architecture im-
plemented by jBPM. The KnowledgeBase class, for example, is specific to the jBPM
implementation, i.e. this concept is not related or represented in the BPMN specifica-
tion.

In summary, BPMN is supported by various organizations including OMG partic-
ipants. Its graphical nature ease the participation of business analysts in the workflow
definition. BPMN has also a wide tool support, that ranges from simple graphical edi-
tors like Borland Together and BPMN 2.0 Modeler for Visio to complete solutions like
Bonita, BizAgi and jBPM. However, we argue in this master dissertation that BPMN

lacks a standard API for communication with information systems.

2.1.3 Petri Nets

Petri Nets, created in 1962, have been proposed to support parallel process simulation
and analysis [Petri, 1962|. The notation has several advantages like: simple language,
support to concurrency mapping, and support to a graphical notation. For this reason,
its use has spread to other areas including business process systems [Aalst, 1996].
However, Petri Nets are centered on low level abstractions. For this reason, when used
for business process modeling, the notation is usually extended with components more

adequate to model business process requirements.

16 CHAPTER 2. RELATED WORK

One of the most popular Petri Net based solution is YAWL (Yet Another Work-
flow Language)|Aalst and Hofstede, 2005]. Due to its popularity, YAWL will be used
as a reference for Petri Net based solutions in this section. YAWL is a typical full-stack
system, providing a complete solution that includes user interface and data manipu-
lation. This architecture has some benefits but in scenarios where the BPMS must
be integrated with other systems or the user interface must be customized, the full-
stack architecture followed by YAWL is a problem [Vergidis et al., 2008]. Moreover,
data and scripts are configured using a XML based language that is not expressive
enough to represent the intersection of business and information technology [Borger,
2011]. Compared to BPEL and BPMN implementations, YAWL has the most limited
integration layer [Vergidis et al., 2008; Havey, 2005|. The problems already discussed
in this chapter—Ilike the use of proprietary APIs and the lack of standardization—are
also present in YAWL. Listing 2.3 shows an example of code that communicates with
YAWL APIs. This code creates a connection with a running YAWL instance, and
returns a session ID that is used by subsequent calls to the API. With exception of the
String, all types used in this code are from the proprietary API provided by YAWL.

1 String url = "http://srv/resourceService/workqueuegateway";
2 WorkQueueGatewayClientAdapter clientWorkQueue =
3 new WorkQueueGatewayClientAdapter (url);

4 String connect = clientWorkQueue.connect("admin", "YAWL");

6 EnvironmentBasedClient clientInterface =

7 new EnvironmentBasedClient ("http://srv:8081/yawl/ib");

9 String sessionID = clientInterface.connect("admin", "YAWL");

Listing 2.3. Example of YAWL code

2.2 Standards

Most standardization efforts reported in the literature on business process relate to
process models [OMG, 2011; Jordan et al., 2007|. Therefore, as mentioned, less atten-
tion has been given to the standardization of the BPMS integration interfaces. The
solely exception is the Workflow Management Coalition (WfMC) work on a Workflow
Client API (WAPI) [WIMC, 1999|. In this section, this interface is presented in more
details.

2.2. STANDARDS 17

2.2.1 Workflow Client API

WIMC is a global organization of adopters, developers, consultants, analysts, as well
as universities and research groups engaged in the creation and evolution of business
process standards. They are responsible for models such as Wf-XML and XPDL".
Another specification from WfMC is the Workflow Client APT (WAPT) [WfMC, 1999].
The WAPI is composed by five interfaces for different interoperability purposes. Figure

2.6 shows an scheme of these interfaces and how they relate to other systems.

PROCESS
DEFINITION
TOOLS

Interface 1 Process Definition Import/Export
Interface 5 ¥
WORKFLOW ENACTMENT OTHER WORKFLOW
SERVICE ENACTMENT SERVICES
ADMINISTRATION \ s
& MONITORING WORKELOW, WORKELOW,
TOOLS :; 1 ENGINES L ENGINES
Interface 2 Interface 3 Interface 4
- Interoperability
v v
CLIENT | WORKLIST TOOL AGENT
APPS HANDLER TYPICAL
WEB SERVICES

INVOKED
APPLICATIONS

Figure 2.6. WMC Interfaces

Source: Workflow Management Coalition

The following list summarizes the purpose of each of these interfaces:

1. Interface 1 provides an API for process definition tools, i.e. tools that provides

functionalities for defining business process.

2. Interface 2 provides an API for client applications that need to call services

provided by an BPMS implementation.

3. Interface 3 provides an API for interoperability between client applications and
BPMSs in a way that the client can provide services to the BPMS by means of
Tool Agents.

4. Interface 4 provides an API for communication between different BPMSs.

5. Interface 5 provides an API for integration with business process administration

and monitoring tools.

"http://www.wfmc.org/

18 CHAPTER 2. RELATED WORK

Considering the scope of this master dissertation, the most interesting interfaces
are the Workflow Client Applications API (Interface 2) and Invoked Applications API
(Interface 3), which deal with the integration between client applications and BPMSs.
The Interface 2 provides a “consistent method of access to WFM functions in cross-
product WFM Engines. The support of these interfaces in WEM products allow the
implementation of front-end applications which need to access WFM Engine functions
(Workflow services). Implementation of these APT calls are also intended to allow the
workflow applications to be adjusted to operate with different WFM Engines using this
common APT interface” [WfMC, 1999|%. In summary, Interface 2 provides an standard
APT for client applications that must execute BPMS operations.

Interface 3 allows passing “workflow and application relevant information to and
from the application”. It allows “the request and update of application data and more
runtime relevant functionalities” [WIMC, 1999|. Therefore, when an application needs
to provide information to a BPMS, it must implement the Interface 3. For example, the
information system can provide behavior for some existing task present in a business
process by implementing this interface.

In WAPI, although there is a specification, it is only textual and there is not a ref-
erence implementation for the abstract API. For this reason, developers that would like
to use the reference, should implement it using the documentation as a reference. This
situation has happened in the implementation of the Open Business Engine BPMS?.
In this case, despite implementing the BPMS, it was need to write the WAPI abstract
interfaces. The problem of this scenario is that if every BPMS implements its own

WAPI set of interfaces, they are not interchangeable anymore.

2.3 Object-Oriented Business Process

Business processes and object-oriented systems follow different paradigms as stated in
other works |[Manolescu, 2001; Cardoso et al., 2004]. Trying to bridge the gap between
such systems, some works have proposed the use of object-oriented components to
describe and execute business processes. The goal is to provide an architecture similar
to the one found in modern information systems. Because the architecture proposed by
this kind of solution uses the same paradigm of the information systems, the integration
between them is seamless. Two examples of this approach, MicroWorkflow [Manolescu,
2001] and WebWorkFlow |[Hemel et al., 2008|, are discussed next.

8In the citation, WFM means Workflow Management, which is used as a synonym for business
process.
9http://obe.sourceforge.net /

2.4. OBJECT-RELATIONAL MAPPING 19

2.3.1 MicroWorkflow

MicroWorkflow is an abstract architecture that defines an object-oriented framework
to implement business processes [Manolescu, 2001]. The emphasis is on providing
resources to build business components that can be integrated to traditional archi-
tectures. MicroWorkflow provides basic BPMS functionality through object-oriented
components. Moreover, these components can be extended to provide advanced BPMS
features. Software developers select the features they need and add the corresponding
components through composition.

The framework provides a simple integration strategy with common software
architectures. The use of object-oriented techniques allow a good level of reuse and
extensibility. On the other side, there is not a rigorous separation of business process
and application code, which can lead to poor encapsulation and higher coupling. Also,
MicroWorkflow does not provide a graphical notation, which makes it harder to have
a ‘big picture’ of the business process. This fact creates a barrier for non-technical

specialists to participate in the workflow modeling.

2.3.2 WebWorkFlow

WebWorkFlow is a full object-oriented language centered in offering abstractions to
build information systems implementing business processes on the web [Hemel et al.,
2008]. Therefore, WebWorkFlow constitutes an object-oriented solution like Mi-
croWorkflow, but while MicroWorkflow relies on a standard object-oriented language
and provides a new architecture, WebWorkFlow provides a full new programming lan-
guage. This language has abstractions for the following concerns: data description,
user interface building, access control, and business process modeling. The benefits of
this approach is that a domain-specific language can provide programming abstractions
directly related to business process. The disadvantages are related with limitations on
general programming constructs. In summary, the benefits and drawbacks of Web-
WorkFlow are similar to those reported for MicroWorkflow, but the requirement of a

new programming language implies a new barrier for adopting the solution.

2.4 Object-Relational Mapping

Information systems usually depend on persistence mechanisms provided by relational
database management systems (DBMS). However, relational databases and object-

oriented languages are grounded in different paradigms. In order to approximate both

20 CHAPTER 2. RELATED WORK

concepts, some researchers have developed frameworks for mapping relational database
elements to object-oriented elements. Such frameworks are widely known as object-
relation mapping (ORM) frameworks [Goncalves, 2010].

Basically, ORM consists of mapping database tables and columns to object-
oriented classes and properties. An ORM implementation provides mechanisms to
associate the elements and control, at runtime, the synchronization of data between
the object-oriented system and the database. By using such frameworks, it is possible
to query and persist complete objects. Otherwise, the developer would have to query
the database and manually read the column values, create objects for each row, and
set the correspondent values in their properties.

Listing 2.4 shows a method that retrieves a list of customers from a database
(lines 1-5) and that stores them in a list of objects (lines 6-11). Listing 2.5 shows the

same method using Hibernate, a popular ORM framework °.

—

List<Customer> listCustomers (Connection connection) {

2 List<Customer> customerlist = new ArrayList<Customer >();
3 ResultSet rs = connection

4 .prepareStatement("select * from customer")
5 .executeQuery ();

6 while(rs.next ())A{

7 Customer ¢ = new Customer ();

8 c.setld(rs.getInt ("id"));

9 c.setName (rs.getString ("name"));

10 customerList.add(c);

11 }

12 return customerList;

13}

Listing 2.4. Retrieving a list of customers from a database using JDBC

1 List<Customer> listCustomers (Session session) {

2 List<Customer> customerlList = session

3 .createQuery ("from Customer")
4 .1list ()

5 return customerList;

6

Listing 2.5. Retrieving a list of customers from a database using Hibernate

The reduction in the effort of retrieving data from the database is noticeable.
Using Hibernate, it is only necessary to specify, in the query, the class mapped to the

database (line 3). The association between the values retrieved from the database and

"Ohttp://www.hibernate.org

2.5. CONCLUDING REMARKS 21

objects is automatically provided by the framework. The developer does not need to
handle columns or tables, which can be seen as accidental complexities typical from
database systems. Internally, Hibernate uses a library called Java Database Connec-
tivity (JDBC), which provides independency of database implementation. Both JDBC
and Hibernate are widely based on design patterns [Gamma et al., 1995].

In this master dissertation, our goal is to propose a mapping framework inspired
by ORM but for the integration between object-oriented information systems and
BPMSs.

2.5 Concluding Remarks

There are three main notations to describe business process: BPEL, BPMN, and Petri
Nets. BPEL relies on standard web services interfaces, which contributes for its in-
teroperability with other systems. On the other hand, BPEL is a verbose XML-based
language and requires considerable overhead to describe and execute business process,
being more suitable for coarse-grained process orchestration.

BPMN is focused on providing a friendly graphical modeling notation that can be
used by a variety of business participants, including business analysts and developers.
BPMN contains a considerable number of elements, not all of them completely specified.
For this reason, it is common that BPMN tools only provide a subset of the complete
specification. These differences among the tools create difficulties for integration with
information systems, because each solution has its own proprietary API. Moreover,
such APIs usually expose low-level implementation details.

Petri Net concepts are present in a variety of process modeling languages. A
popular example of Petri Net based BPMS is YAWL. YAWL includes a language to
describe business process and a complete set of tools to design and execute processes.
However, the main problem of YAWL is its full-fledge support for information system
development. Because it was not designed for integration, YAWL lacks a good support
for communication with external systems.

To summarize, the current interfaces provided by BPMSs have at least the fol-

lowing problems:

1. Implementation Dependency: Once an application is written for a particular
BPMS it is hard to migrate it to another system. Furthermore, the effort of

learning a new API each time the BPMS is changed is considerable.

2. Tight Coupling: Information systems have to import and deal with APIs that

are not conceptually related with their domain layer.

22 CHAPTER 2. RELATED WORK

3. Accidental Complexity: Information systems have to handle nodes and connec-

tors which are not part of the main business problem.

In order to tackle the integration problems detected in current BPMS implemen-
tations, the WEMC has proposed a set of standard APIs called WAPI for interop-
erability between BPMS and other systems. However, major BPMS providers have
not adopted this specification. There are also solutions that provide full support for
process definition using object-oriented constructions, like MicroWorkflow e WebWork-
Flow. Although it is possible to define business process using these tools, they lack
support to graphical languages and in some cases require a completly new language to
implement information systems (e.g. WebWorkFlow).

Finally, it is important to highlight that mapping frameworks are extensively
used to access relational databases. ORM frameworks (like Hibernate) are now popular
and provide considerable advantages over direct database access (for example, using
JDBC APT). This dissertation proposes a similar approach, but for the business process

domain.

Chapter 3

Proposed Solution

NextFlow is a software engineering solution designed to ease the communication be-
tween information systems and business process management systems by means of
traditional object-oriented abstractions. For this purpose, NextFlow provides a map-
ping system to represent business processes as object-oriented elements. Among the
advantages of the proposed solution we can mention: a reduction in the degree of cou-
pling between information systems and business process accidental complexity, a sim-
ple interface, and independence from BPMS implementation. Basically, using mapped
object-oriented elements, information systems can access a business process without

knowing details on the underlying BPMS implementation.

To achieve these goals the following components are proposed:

1. A generic definition of business process elements that enables the representation

of business processes in an implementation independent way.

2. A set of mapping rules that abstract out business process low-level elements (like

tasks and nodes) into object-oriented elements.

3. A reference architecture composed by two layers. The first layer translates specific
elements of a given BPMS into generic elements. The second layer allows the

representation of such generic elements as object-oriented abstractions.

In this chapter, we describe the generic business process model and the rules
to map the elements of this model to object-oriented elements. The details behind

NextFlow’s implementation are explained in Chapter 4.

23

24 CHAPTER 3. PROPOSED SOLUTION

3.1 NextFlow in a Nutshell

In a traditional scenario, information systems must manipulate many aspects of a busi-
ness process to communicate with a BPMS. For example, information systems must
handle concepts such as tasks, connectors, and their semantics. However, such ele-
ments represent accidental complexities in the implementation of information systems
[Brooks, 1987; Borger, 2011|. Therefore, we argue in this master dissertation that in-
formation systems should not be aware of these abstractions. Instead, they should
know only the business semantics expressed by a business process definition.

As illustrated in Figure 3.1, NextFlow plays the role of an interface between the
information system and the BPMS, hiding the details of the business process architec-

ture from the information system.

Diimaiones | NextFlow BPMS
System

Figure 3.1. Integrating information systems and BPMS with NextFlow

In NextFlow, a business process is represented by object-oriented elements. Using
these elements, the information system can interact with the business process. Figure

3.2 presents the main steps that must be followed to use the proposed solution.

1) Developer maps Business
Process Elements to OO

e _\/—> Task A 9
7 o ot End
Information : strt Task® t

System — Task € j|_‘loin

pe—— pe—— - split

,\ 3 2 = — :E - %A
2) IS uses the OO elements T_, Next Flow
J 4) BPMS executes
the mapped process
/ I Y
3) NextFlow translates 00 BPMS

calls to BPMS calls

Figure 3.2. Proposed approach for integrating IS and BPMS

The first step is executed at development time. Object-oriented artifacts—such
as classes, interfaces and methods—must be created and mapped to business processes.

At runtime, the information system access the mapped object-oriented elements (step

3.2. NEXTFLOW BUSINESS PROCESS MODEL 25

2). Each call on methods of these elements is intercepted by NextFlow and translated
to a specific BPMS command (step 3). Finally, the BPMS executes the elements in
the business process previously associated with the called method (step 4).

In the following sections we define the business process model assumed by
NextFlow. We also present a set of rules to map business processes defined in the

proposed model to elements of object-oriented programming languages.

3.2 NextFlow Business Process Model

To create a mapping between processes and objects it is first necessary to define the
core elements of a business process. Although there are many works on business process
modeling [Aalst, 1996; Sivaraman and Kamath, 2002; Adam et al., 1998; Smith and
Fingar, 2003; OMG, 2011|, we still lack a canonical business process modeling notation
[Hofstede et al., 2009; Borger, 2011|. As a result, different notations are used by the
available BPMS. Therefore, it is not recommended to use the model supported by an
existing business process tool because it will couple NextFlow to that specific model.
For example, suppose we select an specific business process notation, Petri Nets [Aalst,
1998] or BPMN [OMG, 2011] for instance, and provide a mapping on top of this
notation. In this case, the result would be a solution tightly coupled to the selected
notation, hampering its reuse.

To avoid this problem, we propose an abstract model to represent business pro-
cesses. This model includes most elements that exist in current business process lan-
guages. Fortunately, for our purposes, the definition of a complete business process
model, which is certainly a complex task, is not necessary. Our model is abstract, and
only defines basic behavior, i.e. the minimum behavior necessary for its representation
by object-oriented abstractions. For example, BPMN defines several types of tasks,
including normal tasks, loop tasks, multiple instance tasks, compensation tasks and
others |OMG, 2011]. However, the subtle differences in the behavior of these tasks are
not important for their mapping to object-oriented elements. Instead, we can rely on
a generic task element to represent all kinds of tasks.

Additionally, our model is used only for communication with the concrete model
provided by an underlying BPMS. Therefore, BPMS users can continue to use the
usual environment and tools to design and execute their business processes.

The NextFlow Model is organized in two parts that represent different stages
of a business process. The first part concerns the design phase, i.e. how the components

of a business process fit in a solution to accomplish a desired objective. The second

26 CHAPTER 3. PROPOSED SOLUTION

part concerns the execution of the designed process by a business process engine. It is
important to mention that the NextFlow Model has its foundations on generic defini-
tions of business processes available in the literature [Hollingsworth, 1995; Aalst, 1996;
WIMC, 1999; Joosten and Purao, 2002].

For the design representation, we assume that a business process is a directed
graph. The organization of the nodes and their relationship is a Process Definition.
A node in a process definition is an Activity Definition. An activity definition can
be of the following types: start, end, split, join, task, and external task. The start and
end types denote the start and end of the process, respectively. Split defines process
parallelization, i.e. it divides the flow in multiple paths. Join defines synchronization,
i.e. multiple flow paths are joined in one path. Tasks and external tasks define work to
be done. We emphasize that an activity definition represents any node in the process
definition, not necessarily a task. These elements represent the design of a business
process, which is usually created with a business process design tool.

BPMSs usually rely on graphical languages to describe processes. Figure 3.3
shows a graphical example of a process definition that includes the elements proposed

in the NextFlow Model. The nodes in this process definition are activity definitions.

Task B |

— Al —@

Task C | Join End

Start Split

Figure 3.3. Example of Process Definition

For the execution representation, we consider a running process as a Process
Instance. Moreover, the runtime counterpart of an activity definition is an Activity
Instance. These elements represent the runtime concerns of a business process when
executed by a business process engine. Furthermore, a task activity has a different
behavior than an external task activity. A task is automatically executed when the
flow reaches the activity, that is, it is executed as soon as the activity is enabled (for
this reason, it is often referred as automatic task). On the other hand, an external task
is only executed when it is triggered by an external system, possibly by the information
system that is using the BPMS.

In order to justify the two task types provided by NextFlow we rely on the
work of Aalst [1996]. In this work, the author states that there are four types of

tasks: automatic, event, user, and timed. In our proposal, automatic and user tasks

3.2. NEXTFLOW BUSINESS PROCESS MODEL 27

are mapped to task and external task, respectively. An event task is triggered by an
external system, therefore denoting an external task in our model. A timed task is
executed when a timer reaches a given timeout. Therefore, if this timer is internal to
the BPMS, it is a NextFlow’s task. If the timer is external, it is a NextFlow’s external
task. In summary, the two types of tasks defined by NextFlow are generic enough to
represent the variety of tasks provided by current business process languages and tools.

Join and Split definitions are also present in other works [Hollingsworth, 1995;
Borger, 2011]. According to Aalst [1996], there are two types of join nodes: AND-JOIN
and XOR-JOIN. In NextFlow, these two types of nodes are merged in a generic join
element. It is the underlying BPMS engine that resolves if the node can be executed

and the actual semantics of its execution. The same happens with split elements.

3.2.1 Model Specification

The NextFlow Model (NFM) is defined, in formal terms, as a tuple NFM = (A, C)

where:

1. A is a set of nodes, called Activity Definitions. An Activity Definition is a
tuple (Type, Name), where Type € {Start, End, Split, Join, AutomaticT ask,
ExternalTask}.

2. (' is a set of directed connectors.
Moreover, the following constraints apply to a NFM:

1. There is only one Start Activity, which can have only one outgoing connector.
2. There is only one End Activity, which can have only one incoming connector.

3. Split Activities can have only one incoming connector, but must have more than

one outgoing connector.

4. Join Activities can have multiple incoming connectors, but must have only one

outgoing connector.

5. Automatic and External Tasks must have only one incoming and only one out-

going connector.

28 CHAPTER 3. PROPOSED SOLUTION

3.3 Mapping Business Processes to

Object-Oriented Abstractions

In the previous section, we presented the business process elements considered by
NextFlow. In this section, we define a mapping between such elements and object-
oriented elements. In order to facilitate the presentation, a simple business process
that defines a banking loan process is used as our running example. This process, as
showed in Figure 3.4, has a single external task, called approve transaction. Despite its
minimal size, this process is able to illustrate the rules we propose to map the elements

of a process to object-oriented abstractions.

—» Approve Transaction J—»\’)

Figure 3.4. Loan Process Definition

3.3.1 Mapping a Process and its Tasks

The most basic functionality that an information system requires from a BPMS is the
execution of external tasks. In a typical scenario, an end-user provides some infor-
mation by filling a form, clicks submit, and generates an event that must be handled
by the information system. The information system then delegates to the business
process engine the execution of this external task with the parameters provided by the
user. Particularly, using NextFlow, the information system delegates the execution of
the task using objects denoting business process elements. Therefore, the first element
that needs to be mapped is the process itself. According to our proposal, a business
process is represented by a programming interface, which establishes the contract be-
tween the information system and the BPMS. The interfaces representing a business
process are called mapped interfaces. Figure 3.5 shows a representation of a business

process using an interface.

interface LoanProcess {

] —» Approve Transaction J—>.|

}

Figure 3.5. Mapping a loan process to an interface

3.3. MAPPING BUSINESS PROCESSES TO OBJECT-ORIENTED ABSTRACTIONS 29

This LoanProcess interface represents a process definition. In order to create
some functionality, it is necessary to declare methods in the interface, which will denote
external tasks. Figure 3.6 shows an example where a task from a process definition is
associated to a method of the interface.

interface LoanProcess {

void approveTransaction(); —» Approve Transaction J—» .;
| t

Figure 3.6. Mapping an external task to an interface method

When the information system calls the method approveTransaction, the asso-
ciated task is executed in the process represented by the interface. Therefore, in our
solution, the information system is oblivious about the internal behavior of the BPMS.

The class implementing the process interface is provided at runtime by NextFlow .

3.3.2 Data

Typically, a business process manipulates some global data |Aalst and Lassen, 2005;
Reimann et al., 2011]|. For example, in a voting process this data can represent the
persons who have already voted. In NextFlow, this data is defined using a set of key-
value pairs, that we refer as process dataset. When a task is executed, it can access
this dataset to read or to write information. A task can possibly write information on
the dataset and subsequent tasks can read that information. The set of key-value pairs
is analogous to a tuple space, where the keys are strings and the values can be of any
type |Gelernter, 1985]. Each entry in this dataset is called a process attribute.

The key-value data structure is used by NextFlow due to its simplicity. However,
in the business process literature, this data structure is generally not formally specified.
For example, Aalst, when presenting his YAWL engine, does not specify how data is
manipulated and just states that “we abstract from data in this paper” [Aalst and
Hofstede, 2005]. However, in YAWL user’s manual, there is a chapter that explains
how to handle data, which is basically represented as an XML document [Hofstede
et al., 2011]. This XML document defines a sequence of data elements, each having a
name and a type. Therefore, the NextFlow data model is generic enough to represent
YAWL’s data. Another example is the BPMN specification that does not enforce a
specific data structure as stated in its documentation: “BPMN does not itself provide
a built-in model for describing structure of data” [OMG, 2011]. However, BPMN

!'Chapter 4 describes how NextFlow provides implementations for mapped interfaces.

30 CHAPTER 3. PROPOSED SOLUTION

formalizes hooks to externally defined data structures, establishing a minimum model
that tool vendors must extend. This model defines a name for the data and a value
with a type that is specific to the tool vendor. Therefore, BPMN model is compatible
with NextFlow Model, relying on a name and a value of any type.

Besides the process dataset, external tasks also have special datasets. As external
tasks are executed by external systems, the exchange of information between them and
the underlying BPMS is often required. For this reason, external tasks can store
parameters for the execution of the task and the results produced from this execution.
On the other hand, other types of activities do not have a dataset because they are

executed as soon as they become available to run.

3.3.2.1 Mapping Data to Object-Oriented Elements

The previously mentioned datasets are also mapped to object-oriented elements. In
order to represent the process dataset, a class must be created. For example, in our
running loan process, a possible process attribute is the client identification. A data
class denoting this value is presented in Listing 3.1.

1 class LoanData {

String clientID;

2

3

4 String getClientID(){return clientID;}

5 void setClientID(String id){clientID = id;}
6

Listing 3.1. Class representing process data

The attributes of the LoanData class denote key-value pairs in the process dataset.
The attribute name references the key (clientID, line 2), and the value of the attribute
is the value stored in the key-value pair. NextFlow keeps the value of the attribute
synchronized with the value in the BPMS. In order words, the attribute clientID is
linked to the key-value pair in the business process whose key is the string "clientID".
A change in the value of this attribute is reflected in the business process and vice-
versaZ.

To get an object of the data class, a method that returns its reference must be cre-
ated in the process interface. The LoanProcess interface with a method getLoanData

for accessing the process data is shown in Listing 3.23.

2Chapter 4 gives more details on how NextFlow keeps the class attributes synchronized with the
values stored in the BPMS.

3Naming rules distiguish a method representing a task from methods that return process data.
Particularly, NextFlow maps methods with a prefix get to process data. More information about
mapping data is given in Chapter 4.

3.3. MAPPING BUSINESS PROCESSES TO OBJECT-ORIENTED ABSTRACTIONS 31

1 interface LoanProcess {

2 LoanData getLoanData();

3 void approveTransaction();
4 3

Listing 3.2. Interface with a getLoanData method to access process data

Besides mapping the process dataset, it is also possible to map the information
handled by external tasks. As already mentioned, external tasks have two datasets:
the parameters and the results. Parameters are data from external entities passed to
the BPMS in order to execute the task. Results are data produced by the execution
of the task, which must be returned to the task executor. To pass parameters to an
external task, the method representing the task must declare the respective parameters.
An example is shown in Listing 3.3, where the approve transaction task requires a

parameter that represents the amount of money borrowed by the client.

1 interface LoanProcess {

2 LoanData getLoanData ();

3 void approveTransaction(Number money);
4 3}

Listing 3.3. Mapping task parameters to method parameters

External tasks can also return values to the caller system. Because meth-
ods in object-oriented languages usually cannot have multiple return values, a class
must be created to represent the results. In our approve transaction task, a possi-
ble result is the ID of the transaction. The class representing the results — called
TransactionInfo — and the updated LoanProcess interface are shown in Listing
3.4. When the approveTransaction method is executed, the result associated to
the key named transactionNumber is stored in the attribute transactionNumber of

the TransactionInfo class (line 2).

—

class TransactionInfo {
Number transactionNumber;

}

interface LoanProcess {
LoanData getLoanData();

TransactionInfo approveTransaction(Number money);

~N Ot s W N

Listing 3.4. Task returns are mapped to method return

32 CHAPTER 3. PROPOSED SOLUTION

3.3.3 Callbacks

The previous abstractions enable the representation of a business process by means of
abstract interfaces. Using methods of these interfaces a client application can execute
tasks and access the process dataset. It is expected that calls to these methods execute
the business operations associated to the task. Although it is possible to implement
such operations in the process definition using programming languages supported by
BPMS tools, it is not a recommended approach. Encapsulating operations in a process
definition is a bad software engineering practice because it results in low cohesion
(i.e. part of the functionality is provided by the information system and part is provided
by the BPMS). Moreover, business process tools are not IDEs, and therefore they do
not provide the necessary support to implement, maintain, debug, and test programs.

A preferred strategy to inject functionality in business processes is to require them
to call external services. These external services can be implemented using traditional
IDEs, which offer more resources for development than the limited tools present in
BPMSs.

In NextFlow these external services are called callbacks. Callbacks are methods
implemented by classes of the information system that are associated to tasks of the
business process. More precisely, external semantics required by an activity in the
process definition can be implemented by a method from an information system class.

Listing 3.5 shows an example of a class with a callback method for the loan process.

class LoanProcessCallback {

—

LoanData data;

TransactionInfo approveTransaction (Number value) {
//code that actually executes the transaction
//and calls other services if necessary
TransactionInfo info = ...; //returning data

return info;

© o0 ~N O Ot A W N

Listing 3.5. A callback for a process definition

In the callback class, methods associated to a task are called when the respective
task is executed by the BPMS. The parameters declared in the callback method are
configured with the values from the task parameters. Each attribute of the object
returned is mapped to a return parameter of the task.

Another feature of callback classes is the access to the process dataset through
its attributes. In our example, the LoanProcessCallback class has an attribute of the

type LoanData. The attributes of the LoanData class are associated to the attributes

3.4. CONCLUDING REMARKS 33

of the process dataset. This mapping is implemented in the same way as the data
mapping regarding process interfaces, described in Section 3.3.2.

Callback classes can also provide external semantics for activity definitions of type
split. In some situations the BPMS by itself cannot determine the paths the flow must
follow after a split. Therefore, to provide this information, a callback can implement
a method that computes the correct path. Basically, this method must return a list
containing the names of the activity definitions the BPMS must execute.

It is also important to highlight the differences between a process interface and
a callback class. Interfaces are used by client applications to execute business process
external tasks. Callbacks provide external semantics to any type of task. The reader
may wonder why the client application do not call the callback methods directly, instead
of using the process interface. Actually, the life cycle of a task may include many rules
implemented by the business process engine. When a method from an interface is called,
the BPMS engine handles the request by executing internal services to accomplish the
finalization of the task. A possible internal service is to callback the application. As
a practical example, an application might request the execution of a task that is not
available. In this case, the BPMS will not advance the process or trigger the callback.
Moreover, the callback environment is different from the one in the information system
that triggered the task.

In summary, callbacks are helpers that complement tasks and splits semantics
using a general-purpose programming language instead of using a BPMS specific re-
source. Finally, it is also important to highlight that the callers of business process

interfaces are completely unaware on the existence of callback classes.

3.4 Concluding Remarks

In this chapter, we introduced the NextFlow Model. This model defines generic ele-
ments to represent both the design and the execution of a business process in a BPMS
independent way. Using the solution proposed by NextFlow, a business process is as-
sociated to a traditional interface from the object-oriented paradigm. Methods of this
interface are associated to external tasks, and their execution is linked to the execution
of the correspondent task in the BPMS. In this way, a client application can trigger
BPMS operations without handling business process accidental complexities (like tasks
and process definitions). In addition to process interfaces, NextFlow propose the use of
object-oriented classes to represent process data. These classes allow the manipulation

of process data using attributes.

34 CHAPTER 3. PROPOSED SOLUTION

Another relevant perspective is from the process designer. Typically, a business
process implementor needs to define behavior for the tasks present in the business
process. NextFlow provides a callback mechanism that supports the implementation
of tasks behavior using methods of the information system, therefore alleviating the
need to implement such behavior using the rudimentary tools usually provided by
BPMSs.

In the following chapter, we report details behind NextFlow implementation,
including the APIs used to represent the elements described in this chapter, how the
model proposed by NextFlow is associated to a real BPMS engine, and how NextFlow

provides concrete implementations for process interfaces.

Chapter 4

Architecture

In the previous chapter we described the business process model and the rules followed
by NextFlow to represent business elements as object-oriented abstractions. In this
chapter, we provide details on NextFlow implementation. We describe the architecture
followed by NextFlow, the provided API, how the business process elements of the
NextFlow model are associated to real business process engines, and how NextFlow
provides implementations for mapped interfaces.

As illustrated in Figure 4.1, NextFlow architecture is organized in two main
layers. The first layer, called Workflow Connectivity (WFC), provides an API to
represent the NextFlow Model (i.e. process definitions, activities, etc). The WFC also
provides means to connect the generic elements of the NextFlow model to real elements
of a BPMS implementation. The second layer, called Object-Workflow Mapping
(OWM), provides an API to represent, in terms of object-oriented abstractions, the

elements of a business process. This layer implements the mapping rules described in

— € \

Information ®—{ Tk
e | BPMS «—> | e ET

<+ ; F
System e {%}.
4 > . : Split & in
v §
Object Workflow Workflow
Mapping Connectivity

NextFlow

the previous chapter.

i@

2

s

Figure 4.1. NextFlow architecture

35

36 CHAPTER 4. ARCHITECTURE

For readers familiar with Java, the WFC layer represents to business processes
what JDBC is for databases, and the OWM layer is analogous to an object-relational
mapping (ORM) framework, like Hibernate'. In the following sections, we describe

these layers in more details.

4.1 Workflow Connectivity Layer

The main objective of the Workflow Connectivity layer is to decouple a BPMS specific
API from the software components using it. Basically, this layer provides an API
that represents the elements of the NextFlow Model described in Chapter 3. Using
the API provided by the WFC layer, NextFlow users are shielded from manipulating
elements that are specific of a given BPMS, therefore creating an independence of

BPMS implementation.

4.1.1 WEFC API

The WFC API is composed by the following interfaces that represent the NextFlow
model presented in Chapter 3:

e ProcessDefinition: represents a process definition.
e ProcessInstance: represents a running instance of a process definition.

e ActivityDefinition: represents an activity definition (i.e. any node in a given

process definition).

e ActivityInstance: represents a running instance of an ActivityDefinition in

a given ProcessInstance.

e WorkItem: provides information on external tasks. Activity definitions of the
type external task can receive parameters from external resources and produce

results. This interface provides means to access this information.

e ActivityType: enumeration that represents the types of an activity definition

(i.e. task, split, join, etc).

To get object references for the aforementioned interfaces, the WFC API defines

three other components:

!'www.hibernate.org

4.1. WORKFLOW CONNECTIVITY LAYER 37

e Session: Represents a connection with the underlying BPMS.
e Driver: Provides concrete implementations for the NextFlow Model interfaces.

e WorkflowManager: Provides static methods to connect to the BPMS, and there-

fore to create Session object instances.

Figure 4.2 shows the class diagram of the WFC API. The WFC API represents an
abstract model, therefore all elements in this diagram, except the WorkflowManager,
are interfaces. The Driver, WorkflowManager and Session types are explained
in Section 4.1.2 and Section 4.1.3. The remaining components represent ele-
ments from the NextFlow Model. The ProcessInstance interface provides meth-
ods like getAttribute and setAttribute to manage a given process dataset. The
ActivityInstance provides methods to complete and abort an activity instance.
These methods have the same functionality as the ones provided by the WorkItem in-
terface, with the exception of the parameters and the result returned by the complete
method. Besides the id attribute that provides a unique identifier for the element, pro-
cess and activity definitions interfaces have a name that represents the human readable
name of the element.

By means of objects implementing these interfaces it is possible to access the
design model and the runtime instances of a given business process. Listing 4.1 shows
the code that executes an activity myTask of a given process instance. Listing 4.2
shows the code that lists all activity definitions of a process definition.

1 ProcessInstance pi = ...;

2 ActivityInstance ai = pi.getActivityByName ("myTask");

3 ai.complete();

Listing 4.1. Executing a task using the WFC API

ProcessDefinition pd = ...;
//get the activity definitions of the process (all nodes)
ActivityDefinition[] defs = pd.getActivityDefinitions ();
for (ActivityDefinition def : defs) {
//print the name and the type of the nodes
System.out.println(def.getName ());
System.out.println(def.getType ());

o N o s W N

Listing 4.2. Listing the activities of a process

It is important to highlight that by relying on the WFC API it is possible to access

the elements of a business process without understanding or using specific BPMS APIs.

38 CHAPTER 4. ARCHITECTURE

Driver WorkflowManager
+connect(url : String) : Session < _________ +registerDriver(driver : Driver)
+getProtocol() : String registers |+getSession(url : String) : Session

|
creates
\V
Session

+getProcessDefinitions() : ProcessDefinition []
+getProcessDefinition(id : String) creates
+getProcesslnstances() : Processinstance []

+createProcessInstance(processld : String) : ProcessInstance

creates \:/ \/
ProcessDefinition Processinstance
id : String <id - string
-name : String +getAttribute(key : String) : Object
+setAttribute(key : String, value : Object)
+start()
<<enumeration>> ActivityDefinition Activitylnstance
ActivityType -id : String -id : String
START -name : String +complete()
END +abort()
TASK
EXTERNAL_TASK \]/
JOIN
SPLIT Workltem
+complete(params : Map<String, Object>) : Map<String, Object>

+abort()

Figure 4.2. Interfaces provided by the WFC API

The WFC layer hides the internal details of a BPMS behind generic interfaces that

represent business process elements.

4.1.2 WFC SPI

There are two types of relations with WFC interfaces. First, there are the clients that
call methods on the interfaces (as exemplified in Section 4.1.1). For such clients, the
WFC interfaces work as an Application Programming Interface (API). Second, there
are clients that implement the WFC interfaces, which act as driver implementors.

For them, WFC interfaces represent a Service Provider Interface (SPI).

4.1. WORKFLOW CONNECTIVITY LAYER 39

The WFC API contains abstract interfaces that represent the NextFlow Model.
The implementation of this model is provided by an external component called driver.
As illustrated in Figure 4.3, a driver implements the interfaces provided by the WFC

layer with constructions that link the generic business process definitions assumed by
NextFlow to a specific BPMS API.

@

) —> TaskA

WFC Client ¢p WFC Abstract API ‘ I{}*T

t '

) \
Provides generic Driver X }4—» BPMS X
buﬂnessprocess_____d//////\\\

elements.

Provides concrete implementations of
WEFC interfaces for a specific BPMS API.

Figure 4.3. Architecture of the Workflow Connectivity Layer

For example, consider an hypothetical BPMS X and its specific driver—called
Driver X—with classes that implement the WFC interfaces. The WFC layer exposes
implementation independent interfaces, but relies on the driver’s classes to communi-
cate with BPMS X. Therefore, in our previously mentioned analogy, they are simi-
lar to JDBC drivers, which provide communication with a particular DBMS. Listing
4.3 shows an hypothetical implementation for the ActivityDefinition interface for
BPMS X. In this code, the types NodeX and BPMSX represent elements from a given
BPMS X specific SPI. The type ProcessDefinitionX represents an implementation,
also provided by the driver, for the ProcessDefinition interface.

class ActivityDefinitionX implements ActivityDefinition {
NodeX nodeX;
ActivityDefinitionBPMSX (NodeX mnodeX){

1

2

3

4 this.nodeX = nodeX;
5 2

6 String getId(){
7 return nodeX.getId();
8

9 String getName (){

0

1 return nodeX.getNodeName () ;

1}

12 ActivityType getType (){

13 switch(nodeX.getNodeType ()){

14 case BPMSX.START_NODE: return ActivityType.START;

15 case BPMSX.END_NODE: return ActivityType.END;

40 CHAPTER 4. ARCHITECTURE

16 case BPMSX.JOIN_NODE: return ActivityType.JOIN;

17 case BPMSX.SPLIT_NODE: return ActivityType.SPLIT;

18 case BPMSX.TASK_NODE: return ActivityType.TASK;

19 case BPMSX.EXTERNAL_TASK_NODE:

20 return ActivityType.EXTERNAL_TASK;
21 }

22 return ActivityType.OTHER;

23}

24 ProcessDefinition getProcessDefinition() {

25 return new ProcessDefinitionX(nodeX.getProcessDefinition());
26}

27}

Listing 4.3. Hypothetical implementation of ActivityDefinition interface

It is worthwhile to mention that clients only access the WFC interfaces. There-
fore, it is possible to change the underlying BPMS without changing the client appli-
cation. For example, it is possible to change the BPMS X shown in Figure 4.3 by a
BPMS Y just by providing a BPMS Y driver.

4.1.2.1 The Driver Interface

Objects implementing the WFC interfaces are instantiated using classes that implement
the Driver interface. This interface has two methods: the getProtocol method, which
returns the name of the BPMS the driver responds to; and a connect method, which
receives an URL with information about the connection and returns a Session object.

Listing 4.4 shows a class fragment that implements a Driver interface.

1 class BPMSXDriver implements Driver {

2 String getProtocol (){

3 return "bpmsX";

4 }

5 Session connect(String url) {

6 //prepares the connection parameters using the provided url
7 Object parameters = ...;

8 //BPMSXConnection is a type from the BPMS X API

9 BPMSXConnection con = new BPMSXConnection(parameters);
10 return new BPMSXSession(con);

11 }

12}

Listing 4.4. Example of a Driver implementation

The connect method returns a Session object (line 10), which in turn, con-

tains methods to access other resources from a given BPMS. To create a complete

4.1. WORKFLOW CONNECTIVITY LAYER 41

independency of driver implementations, users of the WFC API must not directly in-
stantiate a driver object, because they are specific to a given BPMS. For this reason,
a WorkflowManager is provided to manage the available drivers. More details on the

WorkflowManager and Session objects are given in the next section.

4.1.3 WorkflowManager and Session Components

As reported in the previous section, the first object a driver must provide is a Session
object. This object represents a connection to the underlying BPMS and provide
methods to access its processes and activities. Listings 4.5 and Listing 4.6 show the
use of a Session object to retrieve a list of available process definitions and to start a

new process instance.

1 Session session = ...;

2 ProcessDefinition[] defs = session.getProcessDefinitions();

Listing 4.5. Retrieving the available ProcessDefinition objects

1 Session session = ...;

2 ProcessInstance pi = session.createProcessInstance(pd);

Listing 4.6. Instantiating a ProcessInstance object

The direct instantiation of a Driver is not recommended because it would couple
the code to an specific driver implementation. For this reason, the WFC API provides
a class named WorkflowManager to manage driver instances. The WorkflowManager
class provides methods to get Session objects without referencing a Driver im-
plementation. Listing 4.7 shows an example that retrieves a Session using the
WorkflowManager class.

1 Session s = WorkflowManager.getSession("jwfc:bpmsX:resources");

Listing 4.7. Getting a session to a given BPMS

The getSession method receives a parameter that represents the URL of the
BPMS and the process definition the WFC should connect to. This URL has three

parts:

1. The jwfc protocol (which stands for Java Workflow Connectivity, and is a protocol
defined by NextFlow).

2. The drivers name (the WFC layer searches for drivers with this name to provide

a Session object).

3. The business process resources.

42 CHAPTER 4. ARCHITECTURE

When the WFC layer receives a connection request—through the
WorkflowManager.getSession method—the first step is to locate the correct
driver’. The WorkflowManager searches for a driver with the name configured in
the provided URL. After locating this driver, the WorkflowManager calls the driver’s
connect method passing the URL parameter. The driver returns a new Session
object representing the connection with the BPMS, which is passed to the information
system. Therefore, when the information system calls methods on a Session object,
it is actually using the session provided by the driver and consequently it is accessing

the BPMS engine. Figure 4.4 shows the sequence diagram of this process.

<<WFC>> <<driver>> <<driver>> <<bpms>>

Applicati
Al WorkflowManager BpmsXDriver session: BpmsXSession BPMS X

Automatically executed by the
WEC.

getSession("jwfc:bpmsX:resources"L e
» | searchDriver("bpmsX")

A

The WorkflowManager finds

N N the suitable driver by name.
connect("resources")
»
D>

create

. » | bpms specific call
session g pms specif

v

i A
P session) |
< i

getProcessDefinitions()

» bpms specificcall
i H =
ProcessDefinition[] bpms processes
< & ¢
The session returned to the When the application uses the The Driver handles specific
applicationis implemented by session object, it is actually functionality of BPMS.

implementation.

the driver. calling the driver's specific J

Figure 4.4. Sequence diagram for getting sessions

Listing 4.8 shows a code fragment that connects to a BPMS engine (line 1),
creates a process instance for the process named myProcess (line 2), starts the process
(line 3), gets an activity instance named myTask (line 4), and finally executes this

activity (line 5).

1 Session s = WorkflowManager.getSession("jwfc:bpmsX:resources");
2 ProcessInstance pi = s.createProcessInstance ("myProcess");

3 pi.start();

2Currently, our WFC implementation relies on a resource available in the Java language called Ser-
viceLoader to automatically register the available driver implementations in the classpath. Therefore,
an user of the WFC API does not handle Driver objects. More information on Java ServiceLoader
can be found at http://docs.oracle.com /javase/6/docs/api/java/util /ServiceLoader.html

4.1. WORKFLOW CONNECTIVITY LAYER 43

4 ActivityInstance ai = pi.getActivityByName ("myTask");

5 ai.complete();

Listing 4.8. Code to execute a process task

To summarize, by using the WFC API it is possible to access BPMS resources in
an implementation independent way. Furthermore, the WorkflowManager handles the

available drivers in a way that an user of the WFC API is agnostic about such drivers.

4.1.4 WHFC application agents

Despite components to execute operations on the BPMS, the WFC layer provides
application agents that can be used by the BPMS to call services in the information
system. Such agents act as listeners and receive events from the BPMS. By intercepting
these events, application agents can implement functionality that must be executed
when an activity is triggered. The major benefit of using application agents is the
fact that they can be implemented in standard programming environments instead of
writing code in the process definition.

The WFC layer provides the ApplicationAgent interface, which must be imple-
mented by information systems that need to provide activity implementations. This
interface has two methods. The executeActivity method is called when an activity
in the BPMS starts its execution. This method receives the context information of the
activity, including the ProcessInstance, ActivityInstance, and WorkItem objects.
Based on this information, the application agent is able to infer the correct behavior
that must be executed.

The second method in the ApplicationAgent interface is called executePath.
This method is called when the business process reaches a split activity and the BPMS
cannot determine the correct path to execute. When the flow reaches a split, a call
to executePath is made for each possible outgoing path. The executePath method
must return a boolean value indicating whether that path must be executed or not.
The order by which the executePath methods are called is determined by the BPMS.

An example of ApplicationAgent implementation is showed in Listing 4.9. How-
ever, this is a naive implementation used just to provide an example. Each time an
activity is about to be executed in the BPMS or a path must be selected in a split
node, methods of this interface are be called by the WFC layer.

class ApplicationAgentExample implements ApplicationAgent {
void executeActivity(ProcessInstance pi,

1
2
3 ActivityInstance ai, WorkItem wi) {
4 if (ai.getActivityDefinition().getId()

44 CHAPTER 4. ARCHITECTURE

5 .equals ("executeTransaction")){

6 //executeTransaction behavior

7 } else if(ai.getActivityDefinition().getId ()

8 .equals ("dispatchProducts")){

9 //dispatchProducts behavior

10 3

3

12 boolean executePath(ProcessInstance pi,

13 ActivityInstance fromInstance, ActivityDefinition to) A
14 ActivityDefinition from =

15 fromInstance.getActivityDefinition ();
16 if (from.getName (). equals ("executeTransaction")

17 && to.getName ().equals ("dispatchProducts")

18 &% (Boolean)pi.getAttribute("validTransaction")){

19 return true;

20 3

21 return false;

22}

23

Listing 4.9. ApplicationAgent implementation

An application agent must be registered in the BPMS using the WFC
Session.registerAgent method, as showed in Listing 4.10. This procedure must
be done before any attempt to execute processes in the BPMS in order for the agent

to be called.

1 Session session = ...;

2 session.registerAgent(new ApplicationAgentExample());

Listing 4.10. Registering an ApplicationAgent in a Session

When a process is retrieved from the BPMS, the driver is responsible for instru-
menting it with hooks that allow the execution of application agents. The strategy
used by a driver to insert such hooks is dependent of the BPMS API. Therefore, a
BPMS API must provide a pluggable mechanism for external services implementa-
tion. Otherwise, the driver must manually enhance the process with the necessary
hooks in order to enable the application agents functionality. These hooks must call a

Session.invokeApplication method, to trigger the execution of application agents.

4.2 Object-Workflow Mapping Layer

The second layer in the NextFlow solution is the Object-Workflow Mapping Layer

(OWM). This layer enables the association of business processes to programming in-

4.2. OBJECT-WORKFLOW MAPPING LLAYER 45

terfaces by means of particular mapping configurations. Using such configurations, the
OWM layer provides implementations to interfaces that execute the associated process
elements in the BPMS. Internally, the OWM uses the WFC API, which in turn triggers
the BPMS operations. Figure 4.5 shows the architecture of the OWM layer.

—>» TaskA \./
<<Interface>> Tt End
Information MyProcess maps ’ l { e |t
System +taskA() spit Taskc H som
+taskB() T
+askC() 4
JAN
MyProcessimpl BPMS
uses
TprOVIdes\ Tdelegates
OWM Layer J WEFC Layer J

Figure 4.5. Architecture of the Object-Workflow Mapping Layer

The OWM layer also provides means to enable the BPMS to call services imple-
mented by the information system. In this case, instead of providing a programming
interface, the information system provides a callback class. Using WFC application
agents, the OWM layer can associate these callbacks to the execution of activities in
the BPMS. Callbacks are explained in Section 4.2.6. The following section gives an

overview of the OWM layer, which is then detailed in the subsequent sections.

4.2.1 Overview

Most of the OWM mapping rules have been explained in Chapter 3, where a pro-
gramming interface to represent a process definition was presented. The OWM layer
is responsible for providing the implementation of this interface at runtime. In other
words, the client provides an interface and the OWM layer generates a class implement-
ing it. To give an overview of the OWM layer, we reproduce here the example used
in Chapter 3 (Listing 4.11). The LoanData and TransactionInfo classes represent
process and activity data, respectively (refer to Section 3.3.2.1 for details).

@Process ("loanProcess")
interface LoanProcess {
LoanData getLoanData();

TransactionInfo approveTransaction(Number money);

[S

Listing 4.11. Mapped interface representing a process definition

46 CHAPTER 4. ARCHITECTURE

In this example, a @Process annotation is used. This annotation is provided by
the OWM layer to associate types to a specific process. Basically, the annotation in the
example states that the LoanProcess interface represents the process definition with
ID loanProcess. More details on the mapping specification are given in Section 4.2.2.

In the OWM layer, the component that creates the implementation for the
mapped interfaces is the WorkflowObjectFactory, which is the main communication
port between OWM and client systems. The WorkflowObjectFactory also provides
facilities for starting new process instances and to retrieve running processes. Listing
4.12 shows an example of usage for the WorkflowObjectFactory. More details on the
WorkflowObjectFactory are given in Section 4.2.3.

1 WorkflowObjectFactory factory = ...;
2 LoanProcess loanProcess = factory.start(LoanProcess.class);

3 TransactionInfo result = loanProcess.approveTransaction (1000);

Listing 4.12. Example of WorkflowObjectFactory usage

This code creates a class implementing the LoanProcess interface, starts a new
process instance, and returns an object representing it (line 2). Then, using the refer-
ence to the object representing the process (loanProcess variable), the task associated
with the method approveTransaction is triggered with the parameter money set to
1000 (line 3). The results of the execution of the task are mapped to attributes of
the TransactionInfo class. Section 4.2.4 provides details on how the classes that
implement mapped interfaces are created.

The LoanProcess interface also has a method—called getData—to retrieve data
information from the business process. In Section 4.2.4.1, we describe how the OWM
layer keeps data from the object and process instance synchronized. To conclude, the
OWM implements the callback mechanism presented in Chapter 3, which is explained
in Section 4.2.6.

4.2.2 Associating Business Processes to Object-Oriented

Elements

The OWM layer provides ways to map business processes to object-oriented elements
(mapped interfaces or callback classes). Therefore, mapping configurations must be
used to correctly associate the elements. These configurations are acquired by the
OWM layer using two techniques. The first, known as convention-over-configuration,
relies on object-oriented element names to map business process elements. For example,
a process interface method named taskA is associated to activity taskA of the business

process. This is the default mapping configuration used by OWM.

4.2. OBJECT-WORKFLOW MAPPING LLAYER 47

The second technique relies on Java Annotations to explicitly configure object-
oriented elements [Arnold et al., 2005]. Using annotations, the developer can explicitly
define the target business process element the association must be done. Examples
of this configuration were already showed in the Listing 4.11, regarding the use of

@Process annotation. There are two annotations to create configurations:

1. @Process must annotate the mapped interfaces or callback classes associated to
a process definition. This annotation has a single parameter that represents the

ID of the process. The use of this annotation is mandatory.

2. @ContextObject indicates that the return value of a method from a mapped
interface or an attribute in a callback class represents an object with attributes
mapped to the process dataset. This annotation is optional, because getter meth-
ods (i.e. methods prefixed with get) and attributes are automatically mapped to
process datasets. Methods that return context objects must not receive parame-

ters.

Example: Suppose a process definition named myProcess with two activities: taskA
and taskB. The interface associated to this process is presented in Listing 4.13. The
annotation @Process defines that this interface is associated to myProcess, and its
methods are associated to tasks with the same name.
1 @Process ("myProcess")
interface MyProcess {

2

3 void taskA();
4 void taskB();
5

Listing 4.13. @Process annotation example

It is also possible to abort an activity using a mapped interface. For this purpose,
the name of the method must prepend abort to its original name in the business model.
Moreover, such methods must return void and do not have parameters. Listing 4.14
shows an updated example of the MyProcess interface with a method to abort the
execution of the activity taskA. When an activity is aborted, the flow continues to the
next activity. In mapped interfaces, there is also a method that checks whether an
activity is available. The name of this method starts with is, followed by the task
name, and by the suffix Available. Moreover, it must return a boolean value.

1 @Process ("myProcess")

2 interface MyProcess A

3 void taskA();

48 CHAPTER 4. ARCHITECTURE

4 void abortTaskA () ;
5 boolean isTaskAAvailable();
void taskB();

o

Listing 4.14. Methods to abort and to check the availability of a task

In summary, the following rules apply when mapping interfaces to business pro-

cesses:

e Interfaces represent process definitions.

e Methods represent activity definitions. Their names are used to associate them
with tasks with the same name. However, only activity definitions denoting

external tasks can be mapped to interface methods.

e [f the method name has the prefix is and the suffix Available, it is a special

method that tests the execution availability of a task.

e If the method name has the prefix abort, it is a special method that aborts the

associated task.

4.2.3 OWM API

In a typical scenario, an user of the OWM relies on mapped interfaces to issue com-
mands to a BPMS. However, there must be some starting point to retrieve references
to objects implementing such interfaces. For this reason, the OWM layer provides a
small APT to link a client system to the OWM layer.

4.2.3.1 WorkflowObjectFactory

The WorkflowObjectFactory component is the communication port between a client
application and the OWM layer. This component has the following responsibilities:
to create classes implementing the mapped interfaces, to instantiate objects of such
classes, and to store configuration about the underlying BPMS. Listing 4.15 shows the
usage of a WorkflowObjectFactory to start a process instance of a given MyProcess
interface.

1 WorkflowObjectFactory factory = ...;

2 MyProcess process = factory.start(MyProcess.class);

Listing 4.15. Starting a new process instance using the WorkflowObjectFactory

4.2. OBJECT-WORKFLOW MAPPING LLAYER 49

4.2.3.2 WorkflowRepository

In addition to start processes, the WorkflowObjectFactory provides access to a
WorkflowRepository object, which contains methods to retrieve process instances
that are running in the BPMS. Listing 4.16 shows an example that lists the process
instances running in a given BPMS.

WorkflowObjectFactory factory = ...;
WorkflowRepository repository = factory.getRepository();

List<LoanProcess> loanProcesses =

=W N

repository.getRunningProcesses(LoanProcess.class);

Listing 4.16. Accessing running business processes with WorkflowRepository

4.2.3.3 Configuration

To get a reference to a WorkflowObjectFactory instance, a Configuration ob-
ject must be used. This object stores the configurations required to create a
WorkflowObjectFactory. Listing 4.17 shows the most simple code to create a
WorkflowObjectFactory.

1 Configuration configuration =
new Configuration("jwfc:bpmsX:resources");

WorkflowObjectFactory factory =

W N

configuration.createFactory ();

Listing 4.17. Creation of a WorkflowObjectFactory object

In this code fragment, a Configuration is created using a WFC URL (lines 1-2).
Then, using the createFactory method, a WorkflowObjectFactory is created (lines
3-4). Internally, a WorkflowObjectFactory contains a WFC Session object, which

is used to communicate with the underlying BPMS.

4.2.3.4 WorkflowProcess

Completing the OWM API, there is a WorkflowProcess interface. This interface pro-
vides methods to retrieve information about a process instance, including the tasks
available for execution, the ID of the process instance and attributes from the process
dataset. Each object created by the WorkflowObjectFactory implements this inter-
face. Therefore, it is possible to cast objects returned by WorkflowObjectFactory
to WorkflowProcess. Another way to use this interface is to explicitly make the
mapped interface extend WorkflowProcess, as showed in Listing 4.18. In this way,
casts are not necessary because MyProcess already contain the methods declared by

WorkflowProcess.

50 CHAPTER 4. ARCHITECTURE

1 @Process ("myProcess")

2 interface MyProcess extends WorkflowProcess {
3 void taskA();

4 void abortTaskA();

5 boolean isTaskAAvailable();

6 void taskB();

7

Listing 4.18. Process interface that extends WorkflowProcess

4.2.4 Implementing Process Interfaces

The OWM layer provides, at runtime, classes that implement the mapped inter-
faces. Internally, such classes contain a reference to a ProcessInstance whose
ProcessDefinition is the one associated to the interface (as indicated by the @Process
annotation). Methods of the mapped interfaces denote external tasks of the process
definition. The implementation of these methods must execute an activity instance,
whose name is the same of the method. This activity instance comes from the already
mentioned ProcessInstance reference. An example of implementation for the afore-
mentioned MyProcess interface (Listing 4.13) is shown in Listing 4.19. Some method

implementations were removed for the sake of clarity.

1 class MyProcessImpl implements MyProcess, WorkflowProcess {

2 //ProcessInstance is a type provided by the WFC layer
3 ProcessInstance pi;

4 void setProcessInstance(ProcessInstance pi){

5 this.pi = pi;

6 }

7 //methods defined in the MyProcess interface

8 void taskA (){

9 pi.getActivityByName ("taskA").complete ();

10 }

11 void taskB(){

12 pi.getActivityByName ("taskB").complete ();

13 }

14 //methods defined in the WorkflowProcess interface
15 void start (){

16 pi.start () ;

17 }

18 String getId(){

19 return pi.getId();

20 }

21 ProcessInstance getProcessInstance (){

4.2. OBJECT-WORKFLOW MAPPING LLAYER 51

22 return pi;

23 }

24 boolean isTaskAvailable(Object taskName){

25 List<ActivityInstance> activities = pi.getActivityInstances ();
26 for (ActivityInstance ai : activities) A

27 ActivityDefinition def = ai.getActivityDefinition();
28 if (def.getName () .equals (taskName)){

29 return true;

30 }

31 }

32 return false;

33 }

34 //other methods

35 %}

Listing 4.19. Example of a mapped interface implementation

This class links the interface created by the user with the components provided by
the WFC, which in turn is linked to a real BPMS engine. The creation of such class is
triggered when the user starts a new process using the WorkflowObjectFactory.start
method.

4.2.4.1 Data types of the Process Interface

In Section 4.2.1, the mapped interface used as example had a method that returns an
object representing the data from the process instance (Listing 4.11). The signature
of this method is LoanData getLoanData(), which returns an object of the LoanData

type. This type is reproduced from Chapter 3 in the Listing 4.20.

1 class LoanData {

2 String clientID;

3

4 String getClientID(){return clientID;}

5 void setClientID(String id){clientID = id;}
6 1

Listing 4.20. Data class that represents a process dataset

The getLoanData method returns an object that mirrors the data in the business
process dataset. However, as presented in Listing 4.20, there are no references for
process instances in this class. Therefore, the reader can ask how data class properties
are associated to attributes from a business process instance. The answer starts with
the methods returning data classes in mapped interfaces. Listing 4.21 shows a possible

implementation for getLoanData in our running example. OWM relies on a mechanism

52 CHAPTER 4. ARCHITECTURE

where a new class, that extends the user provided data class, is created at runtime.
This new class has a reference to the process instance and overrides the methods in the
super class for, instead of accessing local attributes, communicate with the business
process engine to get and set its data. When an object of the data class is requested,

an object of this extended class is actually returned.

1 LoanData getLoanData (){

2 LoanDataExtended ext = createExtendedObject (LoanData.class);
3 ext.setProcessInstance (pi);

4 return ext;

5 1

Listing 4.21. Method that retrieves a data class object

By using the method createExtendedObject, the getLoanData method creates
a new class that extends LoanData and instantiates a new object (line 2). After that, it
sets a process instance reference (line 3) and returns an object of the extended class (line
4). Tt is important to highlight that this method is implemented in a class provided
by the WorkflowObjectFactory, like the example showed in Listing 4.19. For this
reason, it has a reference to the process instance as an attribute pi (line 3). Finally,
this method relies on a new type LoanDataExtended (line 2), which is also created at
runtime and is provided by the OWM. Listing 4.22 shows a possible implementation
for the LoanDataExtended class.

1 class LoanDataExtended extends LoanData {

ProcessInstance pi;

void setProcessInstance (ProcessInstance pi){

this.pi = pi;

String getClientID (){

return (String) pi.getAttribute("clientID");
}

void setClientID(String id){

10 pi.setAttribute("clientID", id);

11 }

12}

2
3
4
5 }
6
7
8
9

Listing 4.22. Extended data class to access the process dataset

The LoanDataExtended class overwrites the original getters and setters
of the super class with code that reads and writes the values to and
from the business process instance. When an wuser calls, for example,
loanProcess.getLoanData() .getClientID(), it is actually getting the value that
is stored in the business process controlled by the underlying BPMS.

4.2. OBJECT-WORKFLOW MAPPING LLAYER 53

NextFlow does not specify a type for the key-value pairs in a process dataset or
in task parameters. However, in static typed languages, parameters must have types.
For example, the String type of the clientID attribute is chosen based on the type
defined in the BPMS. In case conversions are necessary, the drivers must execute this
task. For example, suppose that an external task specifies a money parameter with
type real, specific from the BPMS under use. The conversion from the BPMS native
type for a Java type (e.g. float) is the driver’s responsibility. However, because most
BPMS have support to Java, such conversions may not be necessary in most cases.
Usually, the drivers return the Java type already returned by the BPMS. Using the
aforementioned example, in the BPMS, the clientID attribute must be defined with
the type String, otherwise, an exception is raised. To summarize, the types used in
the data class and in task parameters must reflect the types specified by the process
and activity definitions in the BPMS.

4.2.5 Creating Classes at Runtime

A nice feature of the OWM layer is the implementation and loading of classes at
runtime. There are two different strategies to implement this feature. One strategy is
used to implement interfaces (like the interfaces that represent processes) and another
is used to extend classes (like the classes representing process data).

To implement process interfaces, the OWM layer uses a Java API called proxy?.
Basically, this API allows the user to provide an interface and a listener object and it
returns a reference to a new class that implements this interface and that delegates its
method executions to the provided listener. In the OWM layer, the implementation of
process interfaces are actually proxies that delegate their method calls to an specific
listener provided by the OWM. This listener uses reflection to read the metadata
in the mapped interfaces and to execute the correct task. A limitation of reflection
in Java is the fact that it is not possible to read parameter names from interfaces.
For this reason, a class implementing a ParameterNamesProvider interface must be
implemented. Fortunately, this task can be automated and the OWM layer provides a
tool that creates this class automatically.

The proxy mechanism only allows the creation of new classes based on interfaces.
To extend existing classes another mechanism was used. When a class is referenced in
a Java program, a component—called class loader [Arnold et al., 2005|—is responsible
for providing a reference to that class. A typical class loader searches the config-

ured class path, and loads the bytecode present in a given class file into the virtual

3http://docs.oracle.com /javase/6/docs/api/java/lang /reflect /Proxy.html

54 CHAPTER 4. ARCHITECTURE

machine. In Java programs, it is possible to access the class loader using objects of
the type ClassLoader, which provides several methods for loading classes. One of
them, receives a byte array that contains a sequence of bytecode instructions. When
this method is executed, a new class defined by the provided bytecode instructions
is loaded into the Java Virtual Machine. It is possible to call this method explicitly,
which is the strategy followed by the OWM. Basically, OWM’s implementation creates
the bytecode that represents the extended class and injects it in the virtual machine
using the ClassLoader. To create bytecode sequences, the OWM relies on a bytecode
library called Cglib (which stands for Code Generation Library)?.

4.2.6 Callbacks

Callback classes provide methods that are executed on the events of a BPMS®. More
specifically, when an activity is triggered in the BPMS, a method in the callback class
is called. Figure 4.6 shows the basics of the callback functionality, including the steps
executed by the WFC layer. First, the information system provides a callback class
that maps a process. Then, the OWM registers in the WFC an application agent (step
2). The driver installs the hooks to execute application agents in the BPMS (step 3).
At runtime, the BPMS send events to the installed hooks (step 4), that in turn invokes
the WFC layer (step 5). After that, the WFC layer invokes the installed application
agents (step 6). One of such agents is provided by the OWM layer, which invokes the

correspondent method in the callback class (step 7).

<<Callback>> — Taska 9
¢ MyProcessCallback | ; maps Start End

System +taskA() EBLIELLR I { Task B T
Split
+

Information

—
+taskB()

+taskC() Task C Join

—_—

BPMS
7. invokes callbacks

OWM J 4. send events\‘

Application Agent 5 invokes
- . N application T B
2. prowde/ 6. invokes appllcatlor@ 3. installs

Driver

OWM Layer J WEFC Layer J

Figure 4.6. Architecture of the callback implementation

4http://cglib.sourceforge.net
5(Callback classes were defined in Section 3.3.3. This section explains the implementations details
of these classes.

4.2. OBJECT-WORKFLOW MAPPING LLAYER 55

The registration of callback classes is performed using a Configuration object.
Listing 4.23 shows a code fragment that associates a callback to a given configuration.

Listing 4.24 shows an example of the MyProcessCallback implementation.

1 Configuration ¢ = new Configuration("jwfc:driver:resources");
2 c.addCallbackClass (MyProcessCallback.class);

Listing 4.23. Adding a callback to the configuration

—_

@Process ("myProcess")
class MyProcessCallback {
void taskA ()
// extra behavior of task A
¥
void taskB ()A{
// extra behavior of task B

© e N Ut s W N

Listing 4.24. Example of callback implementation

Just like a process interface, a callback class must be annotated with @Process
annotation to indicate the process the callback refers to. When the BPMS executes an
activity, a callback method with the same name—if available—is called.

The execution of callbacks is performed by a special application agent provided
by the OWM to the WFC session®. This special agent delegates to callback classes
the execution of the activities. Listing 4.25 shows an example of an OWM application

agent to handle callbacks.

1 class OWMApplicationAgent implements ApplicationAgent A
2 Configuration configuration;

3 OWMApplicationAgent (Configuration configuration) A

4 this.configuration = configuration;

5 1

6 void executeActivity(ProcessInstance pi,
7 ActivityInstance ai,

8 WorkItem w) {

9 Object [] callbacks = getCallbacksForProcess (pi);
10

1 for (Object callback : callbacks) {

11 Method m = getMethodForActivity(ai);

12 if(m !'= null){

13 String[] params = getParameters(m);

14 Object [] values = getValues(params, w.getParameters());
15 Object result = m.invoke(callback, values);

6Refer to Section 4.1.4 for an explanation on application agents.

56 CHAPTER 4. ARCHITECTURE

16 Map<String, 0Object> resultMap = convertToKeyValue (result);
17 w.setResults (resultMap);

18 }

19 }

20}

21 boolean executePath(ProcessInstance pi,

22 ActivityInstance ai,

23 ActivityDefinition target) {
24 Object [] callbacks = getCallbacksForProcess (pi);
25 for (Object callback : callbacks) {

26 Method m = getMethodForActivity(ai);

27 if(m !'= null){

28 Object rObj = m.invoke(callback);

29 List<String> result = convertToStringList (r0bj);
30 if (result.contains (target.getName ())) {

31 return true;

32 3

33 3

34 }

35 return false;

36}

37 //other methods

38 7}

Listing 4.25. Example of an OWM application agent

This class is instantiated with a Configuration reference, which has refer-
ences to the callback classes (lines 2-5). In the executeActivity method, the
getCallbacksForProcess method uses this Configuration to get the callback ob-
jects suitable for the process instance (line 9). Then, for each callback object, it gets
the suitable method that implements the activity (i.e. the method with the same name
of the activity, line 11). Regarding the parameters names declared in the method (line
13), it gets the correspondent parameter values from the work item (line 14). The call-
back method is invoked with the parameter values originally retrieved from the work
item (line 15). Finally, the result of the method is converted to a map of key-value
pairs (line 16) to configure the work item results (line 17).

A callback class can also be used to determine the path of a split activity just
like in the WFC layer. A method that determines such path must return a list of the
activity names that must be executed. The data type representing the activity names
can be String or a Java enum. When the OWM special application agent receives
a request to determine a path, it calls the respective callback method to determine

if the path can be executed or not. If there are no methods to determine the path,

4.3. CONCLUDING REMARKS 57

an exception is raised and the business flow is halted. Listing 4.25 also presents the
implementation of an executePath method (lines 21-36). This method is similar to
the executeActivity, with the exception that the methods from the callback classes it
calls do not have parameters and return a list of activity names that must be executed
(lines 28-29). If the returned paths contain the activity to be executed (line 30),
executePath returns true (line 31) indicating that the BPMS must follow that path.

4.3 Concluding Remarks

In this chapter, we described the two central layers that compose the NextFlow archi-
tecture. The Workflow Connectivity (WFC) layer works as an adapter that enables
the usage of BPMS engines without handling any specific API. As a result, the WFC
makes it possible, for example, to change the BPMS without changing the client code.
The WFC provides interfaces that represent elements of the generic business process
model proposed by NextFlow, including ProcessDefinition, ActivityDefinition,
WorkItem, and others. By using these interfaces, it is possible to represent the design
and runtime concerns of a business process. The WFC also provides hooks, called
application agents, to handle events raised by a BPMS.

The second layer, the Object-Workflow Mapping (OWM), provides components
to map object-oriented elements to business process elements. By using traditional
programming interfaces, users can trigger operations in the BPMS. The OWM layer
extends the abstractions provided by the WFC and shields the user from accidental
complexities typical from business processes. In this way, it allows the information
system to be oblivious about low-level business process elements, such as tasks and

connectors.

Chapter 5

Evaluation

The central goal of NextFlow is to provide a high-level interface between object-oriented
information systems and BPMSs. To evaluate how NextFlow promotes this interface,
we have compared the implementation of a system that does not use NextFlow with
the implementation of the same system using our solution. In this comparison, we
highlight the difficulties found using an available BPMS and how NextFlow provides a

high-level interface that is simple to use.

5.1 Target System

To evaluate the solution, we have created a Charging System for cell phones that
supports a mechanism for transferring money using cell phone messages. For example,
consider two cell phone users, John and Mary. John needs some money from Mary. In
this scenario, John can use his cell phone to send a credit transfer request to Mary. If
Mary authorizes the request, the charging system will transfer the credit from Mary
to John. This process is controlled by the system we are proposing here.

The communication between phone users and the Charging System is done by
SMS messages. The user requesting the transfer sends an SMS to the charging system.
The charging system checks the message, which contains the target user and the value
required. Then, an SMS is sent to the target cell phone requesting authorization. If
the target user responds with an SMS authorizing the request, the credit is transferred.
Figure 5.1 shows the basic functionality provided by the system. The Charging System
must check whether the request is valid and whether the target user has enough credit.
If the target user does not respond the request within a given time, the request is

automatically canceled.

29

60 CHAPTER 5. EVALUATION

. 2.The Charging System

" [requests Mary s authorization

3. Mary authorizes

1. John requests the transfer
credit from Mary IV

4. The credit is transfered
from Mary to John

Figure 5.1. Charging System basic workflow

5.2 Process Definition

As mentioned, we have created two implementations for the proposed system: using
direct BPMS access and using NextFlow. Both depends on a business process engine.
The engine used in this evaluation is jBPM!. We chose jBPM because, as stated before,
it is a popular BPMS that counts with a comprehensive documentation |Wohed et al.,
2009]. Independently of using NextFlow or not, the first step in the Charging System
implementation is to design the business process using the chosen BPMS, in this case
jBPM. The same process definition will be used to evaluate both implementations.

Figure 5.2 shows the business process for the Charging System using jBPM pro-
cess definition language. It is worth to mention that this model has elements not
defined in NextFlow’s model presented in Chapter 3. For example, Elements 3 and 9
are splits, but their symbol denotes different types of splits. However, as mentioned
in Chapter 3, NextFlow assumes a generic model, and such specific elements of jJBPM
can be represented using one of the NextFlow’s generic elements.

The following list explains the main elements of the proposed business process:

1. Starting point of the process.

2. External Task that receives a payment request, process it, and verifies whether

it is valid.

"http://www.jboss.org/jbpm/

5.2.

PROCESS DEFINITION 61

9
O 1 |2 Request Authorizaion > <.|>
(% Request Payment 2 m @ Send Authorization Response

|

3 <) 6
@& —{ pomcwn @
l \ l 1 4

15

4
\
[E} Send Invalid Request Messag% [_51 Send Not Enought Credt Messa% /

10.

! }

@ @

|2 Execute Transaction

18

|2 Send Confirmation Message

Figure 5.2. Process definition for the Charging System

. In jBPM, this is a XOR-Split which means that only one outgoing path must be

taken. Particularly, this split reads the information processed by Activity 2 and
then moves to Activity 4 if the request is invalid. Otherwise, it moves to Activity
5.

. Automatic task that sends a message to the user informing that the transfer

request is invalid.

. Automatic task that checks whether the target user has enough credit.

. Split that checks whether the previous activity has detected enough credit. In

this case, moves to Activity 8. Otherwise, moves to Activity 7.

. Automatic task that sends a message to the user informing that the target has

not enough credit.

. Automatic task that sends a message to the target user informing about the

transfer request.
In jBPM, this is an AND-Split, which means that all outgoing paths are taken.

Automatic task that starts a timer controlled by the information system. After

a given timeout, Activity 11 will be executed.

62

11

12.

13.

14.

15.

16.

17.

18.

CHAPTER 5. EVALUATION

. External task triggered by the timer started in Activity 10. This task sets a flag
on the process to cancel the charging, because the target user has not authorized

the request in enough time.

External task that receives a message from the target user. This task checks
whether the message is a deny or an authorization message and sets this infor-

mation in the process data.

Automatic task that cancels the timer started in Task 10. If this task is reached
it means that the target user has responded and the process does not need to be

canceled.

In jBPM, this component denotes an AND-JOIN, which means that all incoming

paths must be finished in order for the flow to continue.

Split that checks the process status configured by the previous activities. If the
target user has authorized the request, the flow goes to Activity 17. Otherwise,
the flow goes to Activity 16.

Automatic task that sends a message informing that the target user has not

authorized the request.

Automatic task that executes the transfer when all data is correct, and the target

user has authorized the transfer.

Automatic task that sends a confirmation message for both the requesting user

and to the target user informing that the transfer was completed successfully.

We will rely on this process definition to compare the implementations based on

direct jBPM access and using NextFlow access.

5.3 Charging System Architecture

The

and

implementation of the charging system in real cell phones is out of the scope,

the user interface is not relevant for this evaluation. For this reason, cell phones

were simulated using a web interface as shown in Figure 5.3. In this interface, the cell

phones are allowed to send and receive SMS messages. A component implemented in

the Charging System simulates the mobile carrier providing the communication service

between the phones.

5.3. CHARGING SYSTEM ARCHITECTURE 63

How are you?
en

=

Figure 5.3. Different screens of the user cell phone interface

Besides the cell phones controlled by users, it is possible to register special phones,
which are systems that respond to messages. In our evaluation, one special phone is
used for each different implementation scenario. More specifically, there are two special
phone implementations: one to manage messages using direct BPMS access and one
to manage messages using NextFlow. By using this architecture, the user interface is
preserved and only the business process code is changed between the implementations.

To help in understanding the proposed architecture, we call the user interface
and the components common to both implementations the basic system, and the
different business process implementations the process system. Therefore, there is
one basic system and two process systems. To integrate the basic system with the
process system there is a provided interface called SpecialPhoneHandler. Each pro-
cess system must implement this interface, which has two methods: getPhoneNumber
that returns the phone number to be used by the process system; and onNewMessage
that is called by the basic system each time a new message arrives for the special cell
phone number. The basic system also provides the Carrier class that allows sending
messages to cell phones. Finally, the ChargingManager class is responsible for transfer-
ring credit from one user to another. Listing 5.1 shows a basic implementation for the
SpecialPhoneHandler interface. In this example, each time an user cell phone sends
a message to number 999 the onNewMessage method is called. The user who sent the
message and the message itself are passed as parameters.

class PhoneHandlerImpl implements SpecialPhoneHandler {

Carrier carrier;

1
2
3 ChargingManager charginglManager;
4

64 CHAPTER 5. EVALUATION

5 public String getPhoneNumber () {

6 return "999";

7 }

8 public void onNewMessage(String from, String message) A
9 // takes some action on a new message

10 }

1}

Listing 5.1. Example of SpecialPhoneHandler implementation

The evaluation of the solutions is divided in two parts. First, an overview of
the architecture is explained, then we show the implementation details. The architec-
ture will be explained individually for each of the implementations, as it is a complex
subject. The implementations are presented in a comparison section showing the differ-
ences of both systems. Following this organization, Section 5.4 explains the implemen-
tation using direct BPMS access and Section 5.5 explains the system with NextFlow.

A comparison of the solutions is presented in Section 5.6.

5.4 Direct BPMS Access

This section presents the process system architecture using direct BPMS access. In
other words, the process system directly relies on the native API provided by the
BPMS engine. Because we are using jBPM as our underlying BPMS, the API used
is the jJBPM API. However, we will not focus on how the jBPM API works, but on
the necessary effort to integrate an information system with this particular BPMS. It
worth to note that jJBPM is advertised as a BPMS that has focus on the developer,

and therefore it should provide facilities for integration with information systems.

5.4.1 Process System with jBPM

According to the architecture organization proposed in this chapter a process system
must implement the SpecialPhoneHandler interface used by the basic system. By
means of a class implementing this interface, the process system can be connected to
the basic system and provide behavior for a process implementation. Figure 5.4 shows
a diagram with the main classes of the system.

The SpecialPhoneHandler interface is implemented by the
JbpmPhoneProcessManager class. 'This class is central to the implementation of
this process system. Upon receiving messages from the basic system, it dispatches

them to the jBPM engine for processing. In jBPM, the component that enables

5.4. DIRECT BPMS ACCESS 65

]

<<Interface>> <<Service>> <<Service>>
SpecialPhoneHandler Carrier ChargingManager

& I\
[[1

Process System (jBPM) jBPM Engine
implements
JbpmPhoneProcessManager
-carrier : Carrier |
-chargingManager : ChargingManager /|\
-ksession : StatefullKknowledgeSession

Basic System

T
1
! <<Interface>>

StatefulKnowledgeSession

+onNewMessage(from : String, message : String) <<Interface>>
+executeScriptTask(kcontext : ProcessContext) | ProcessContext

Figure 5.4. Components of the JBPM process system

this communication is the StatefulKnowledgeSession. Finally, the basic system
also provides some services (Carrier and ChargingManager). The diagram also
shows a ProcessContext interface from the jBPM API. This interface is used by
the JbpmPhoneProcessManager to retrieve information about a given process under
execution. The usage of this interface is explained in Section 5.4.4.

An object of the JbpmPhoneProcessManager class is initialized by the ba-
sic system, which provides the Carrier and ChargingManager objects. The
JbpmPhoneProcessManager is responsible for getting an StatefulKnowledgeSession

object in order to issue commands to the jBPM engine.

5.4.2 Dispatching Messages to the jBPM Engine

When a new message from an user is available to the phone number associated to
the jJBPM process system, the basic system calls the onNewMessage method of the
JbpmPhoneProcessManager class. The responsibility of the onNewMessage method is
to trigger a task of the business process. To perform that, this method must execute

the following operations:

1. Get a running process for the user that sent the message. If there is no process

for the user, it must create a new one.
2. Get the correct task for execution within the process.

3. Execute the current task.

66 CHAPTER 5. EVALUATION

In order to organize the application, instead of invoking the jBPM API directly,
the onNewMessage method delegates this task to objects from an interface created for
the JBPM process system named ExternalTaskHandler. Each external task present in
the process has an associated class implementing the ExternalTaskHandler interface.
Objects from these classes are associated with the name of the task using a map.
During the initialization of the JbpmPhoneProcessManager class, this map is filled
with task names as keys and the correspondent handlers as values, as illustrated in
Listing 5.2. Therefore, when a task needs to be executed, a handler specific to the task
is executed to dispatch the request to the jBPM engine. This solution avoids the use
of nested if statements to test which task should be executed and therefore provides
a better organization of the application. This external task handler architecture is an

implementation of the Application Controller design pattern |Alur et al., 2003|.

1 Map<String, PhoneChargingHumanTaskHandler > hs

2 = new HashMap<String, PhoneChargingHumanTaskHandler >();
3 hs.put ("Request Payment", new RequestPaymentHandler ());
4 hs.put("Cancel Process", new CancelProcessHandler ());

5 hs.put("Send Authorization Response",

6 new SendAuthorizationResponseHandler ());

Listing 5.2. Configuring handlers for external tasks in the jJBPM implementation

Listing 5.3 shows the code for the onNewMessage method, which uses the de-
fined external task handlers. It first gets the process instance related to the user
that sent the message using the getProcessForParticipant method (line 2). In this
method, if there is no process running for the user, a new one is created. Then, the
getNodeInstances returns the available tasks (line 3)2. The method getSuitableNode
returns the node that must be executed (line 4). From this information, the appropri-
ate handler is selected (lines 5-6). Finally, the handler’s execute method is called to
execute the external task (line 7).

1 void onNewMessage(String from, String message){
ProcessInstance pi = getProcessForParticipant (from);
NodeInstance[] nodes = pi.getNodeInstances();
NodeInstance node = getSuitableNode (nodes);
ExternalTaskHandler handler =

getExternalTaskHandler (node.getName ());

handler.execute (from, message, node);

o N O Ut s W N

Listing 5.3. Code that calls an external task handler

2In jBPM, a NodeInstance object represents an activity instance.

5.4. DIRECT BPMS ACCESS 67

A distinguishing characteristic of the charging process we are evaluating is the fact
that exists only one external task available at any moment of the process execution. For
this reason, the getSuitableNode method actually returns the unique node available
in the nodes variable (line 4). The getExternalTaskHandler uses the previously
mentioned map to retrieve the associated handler for the task name.

The method getProcessForParticipant has the responsibility of querying the
jBPM engine for the correct process of the participant. However, a problem that
remains is how to assert that a running process is from one user or not. This problem
is solved by declaring, in jJBPM terms, process variables, which store information about
the process under execution. Section 5.4.3 describes how to declare such variables in a
jBPM process.

In summary, from what has been explained so far, the flow happens in the fol-

lowing sequence:

1. An user sends a request using a cell phone message. This message is adressed to

the number configured for the jBPM process system.

2. The basic system receives and dispatches the request to the cor-
rect SpecialPhoneHandler implementation, which in this case 1is the

JbpmPhoneProcessManager.

3. The JbpmPhoneProcessManager receives the request through the onNewMessage
method.

4. In the onNewMessage method, a process for the user is selected and the correct

handler for the task is executed.

In this section, we are only explaining the details of the architecture implemented
in the Charging System. Examples of code for external task handlers are presented
in Section 5.6, where the direct BPMS implementation is compared to the NextFlow

solution.

5.4.3 Providing Data

Typically, business processes need information to execute their tasks. This fact was
evidenced in the previous section when it was needed to know the owner of the process.
In our Charging System, this information includes the user that requested the transfer,
the user that is being charged, and the value of the transaction. In this section, we

describe how variables are declared in a jBPM process to handle information like that.

68 CHAPTER 5. EVALUATION

There are two ways to define variables in a jBPM process. The first one is using
its graphical user interface, as illustrated in Figure 5.5. Using property boxes, it is

possible to define the type, name, and a possible default value for a variable.

r 2
2 Variable List Editor &
N o]
= | to |
[Properties £2 . [£(Problems| & Human TaskView‘ q | value [Remove]
validRequest
Property Value enoughCredit Edit
Connection Layout Manual :‘:::?;:d g —— 53 N
Exception Handlers {} = Edit Variable
Id org.nextflow.g Name: from
Name Charging Pro: s
Type
Package defaultPacka ype |@biech =
Swimlanes 1] ClassName String
Variables [from, to, value, validRequest, enoughd | Value:
Version
[oK] [Cancel]
—

Figure 5.5. Variable declaration using jBPM graphical interface

The second way is to declare the variable in a XML file that represents the

business process. Listing 5.4 shows an example of variable declaration in a XML file.

1 <itemDefinition id="_fromItem" structureRef="String" />

2 <property id="from" itemSubjectRef="_fromItem"/>

Listing 5.4. Declaring variables in XML

Using one of the aforementioned approaches, we must define the data that our
process needs to manipulate. The following list shows the variables created to support

the charging process.

e from (type String). Variable that represents the user that requested the transfer.
e to (type String). Variable that represents the user that will send the money.
e value (type Double). Variable that represents the amount requested.

e validRequest (type Boolean). Variable that indicates that the process has a
valid request.

e enoughCredit (type Boolean). Variable that indicates that the target user has

enough credit.

e authorized (type Boolean). Variable that indicates that the target user has
authorized the transfer.

5.4. DIRECT BPMS ACCESS 69

5.4.4 Providing Behavior

With the aforementioned architecture and variable configuration, it is possible to dis-
patch requests to the business process. However, the process itself does not encapsulate
any system logic. The Charging System business process has tasks that should exe-
cute some behavior, which has not been defined yet. Therefore, it is necessary to
complement the process with the behavior correspondent to each task.

Similar to the ways for defining variables in a jBPM process, it is possible to
add behavior to process tasks. More specifically, we can implement this behavior in
property boxes or directly in XML. Figure 5.6 shows a property box with a Java code

that provides behavior for a task.

(= Action editor M
Dialect: [java '] [Imports] [Globals]

Textual Editor

Integer availableCredit = chargingManager.getCreditFor(from);
if(availableCredit > value){
kcontext.setVariable("enoughtCredit”, true);

by

[OK] [Cancel

A\ 4

Figure 5.6. Task behavior implementation in property boxes

Clearly, none of the approaches—code in property boxes or XML configuration
files—are recommended. Implementing code in property boxes hampers cohesion. Ad-
ditionally, property boxes are not IDEs, and therefore they do not provide facilities
like code completion nor means to compile the code.

In order to alleviate the problems of writing code in property boxes, an archi-
tecture was created for the jJBPM implementation. Instead of writing code inside the
process definition, only a callback is written. This callback code transfers the control
back to the information system and allows the implementation of task behavior in an
usual method of the information system. This solution increases cohesion and makes it

possible to use standard IDEs to implement task behavior. Listing 5.5 shows the code

70 CHAPTER 5. EVALUATION

that triggers the callback in our Charging Process. Each task must include this code

in its respective property box.
1 manager.executeScriptTask (kcontext);

Listing 5.5. Code implemented in the property box of each task

In this code, the manager variable denotes an object that must be created in the
information system and passed as a parameter to the business process. This way, when
the executeScriptTask method is called by the jBPM engine, the control goes back
to the information system. Example of the code that sets this variable is presented in
Section 5.6.2.

The kcontext is a jJBPM implicit variable (i.e. declared by the jJBPM engine auto-
matically) and contains information about the task under execution. This information
is used by the executeScriptTask method to execute the correct behavior of the task.

Listing 5.6 shows the code of the executeScriptTask method, which is imple-
mented by the JbpmPhoneProcessManager class. This code gets the node instance
to be executed from the context (line 2), then retrieves a suitable handler (lines 3-4)
and calls its execute method (line 5). The handler has type ScriptTaskHandler,
an interface created in the process system similar to the ExternalTaskHandler inter-
face mentioned before. The difference is that objects of the ScriptTaskHandler type
are called by the task being executed while the ExternalTaskHandler is called by an
external user of the system.

1 void executeScriptTask(ProcessContext context){

2 NodeInstance nodelInstance = context.getNodeInstance ();

3 ScriptTaskHandler handler =

4 getScriptTaskHandler (nodeInstance.getName ());

5 handler.execute(nodeInstance);

6 3}

Listing 5.6. Implementation of executeScriptTask method

With this solution, it is possible to implement the code of a task in the information
system. Otherwise, the business code would be written in property boxes, which suffers
from the problems previously mentioned.

The following list summarizes what has been explained in this subsection:

1. When the jBPM engine executes a task, the code

manager .executeScriptTask(kcontext) is triggered.

2. This code, using a predefined manager object, returns the control to the infor-

mation system using the executeScriptTask method.

5.5. BPMS Access wiTH NEXTFLOW 71

3. The executeScriptTask selects an apropriate handler for the task under execu-

tion.

4. The handler executes the task behavior.

In this section, we have explained the three main concepts of the jBPM imple-
mented architecture: variable declaration, external tasks triggering, and task behavior
implementation. The following section explains the same concepts for the process sys-

tem implemented using NextFlow.

5.5 BPMS Access with NextFlow

NextFlow is based on three fundamental artifacts that are mapped to business process
components: 1) a class that represents the data structure manipulated by the business
process, 2) an interface that abstracts tasks as a set of methods, and 3) a class that
implements the behavior of the business tasks. With these three components it is
possible to establish the communication from the information system to the BPMS
and vice-versa. Moreover, it is possible to rely on a data structure that mirrors the
data stored in the process.

In this section, the architecture followed by the Charging System using NextFlow
is presented. Its organization is similar to the previous section that explained the

implementation using direct BPMS access.

5.5.1 Process System with NextFlow

According to the architecture presented in Section 5.3, to create a process system for
the Charging System, a class that implements the SpecialPhoneHandler interface
is required. In the NextFlow implementation, this interface is implemented by the
NextPhoneProcessManager class. Figure 5.7 shows a class diagram with the com-
ponents that are part of the NextFlow implementation. The first difference in the
interface of the NextPhoneProcessManager class when compared to its jJBPM counter-
part (JbpmPhoneProcessManager) is that NextFlow uses a WorkflowObjectFactory
as a communication link between this class and NextFlow. The other difference is that
NextFlow’s implementation does not require an executeScriptTask method. Because
NextFlow provides means to callback the information system, it is not necessary to cre-

ate workarounds, as it was needed when using the jBPM API.

72 CHAPTER 5. EVALUATION

]

<<Interface>> <<Service>> <<Service>>
SpecialPhoneHandler Carrier ChargingManager

5 —— 7
— —]

Basic System

: Process System (NextFlow) NextFlow
I implements <<Interface>>
NextFlowPhoneProcessManager WorkflowObjectFactory
-carrier : Carrier L1
-chargingManager : ChargingManager /l\

-factory : WorkflowObjectFactory
+onNewMessage(from : String, message : String)

Figure 5.7. Components of the NextFlow process system

5.5.2 Dispatching Messages using NextFlow

To call external tasks using NextFlow, it is necessary to create the interface that
represents the business process. Listing 5.7 shows the ChargingProcess interface that
maps the charging business process and exposes its external tasks as methods.
1 @Process ("org.nextflow.example.payment.nextflow")
interface ChargingProcess extends WorkflowProcess A
//tasks methods

void requestPayment (String from, String message);

void cancelProcess();

//aborts task methods
void abortCancelProcess ();

2
3
4
5
6 void sendAuthorizationR.esponse(String message);
7
8
9 void abortSendAuthorizationResponse();

0

//process data acessor method

11 ChargingProcessData getData();

Listing 5.7. Interface that represents the Charging System external tasks

In this interface, there are three methods representing the three external
tasks available in the process definition: requestPayment, cancelProcess, and
sendAuthorizationResponse (lines 4-6). The parameters of the methods are declared
as needed by the business rules. For example, to request a payment, it is necessary
to inform who requested the payment and the message that contains the request (line
4). Different from the jBPM Charging System implementation, there is no need to

declare parameters in a jJBPM business definition file. Other two methods were created

5.5. BPMS Access wiTH NEXTFLOW 73

to abort tasks: abortCancelProcess and abortSendAuthorizationResponse (lines
8-9). The last method presented in the interface retrieves an object that represents the
data of the process (line 11). The ChargingProcessData class is created in the process
system and it is recognized by NextFlow as the data structure for the process (as its
method starts with the prefix get). This class is discussed in more details in the next
subsection. Finally, this interface extends the WorkflowProcess interface available in
the NextFlow framework. This pre-defined interface provides methods to interact with
the process (for example, methods to retrieve the available tasks).

With the interface created, it is possible to implement the onNewMessage of the
NextPhoneProcessManager. Remember that the onNewMessage is called by the basic
system whenever a new message is available. The implementation of this method in
the solution based in NextFlow is similar to the respective one in the jBPM imple-
mentation. Listing 5.8 shows the onNewMessage implemented with NextFlow. The
differences start from the ChargingProcess object (lines 2 3). Instead of having a
generic ProcessInstance object, NextFlow allows the creation of a type that refers
directly to the specific process. The relevance of this type is discussed in Section 5.6.3
when jBPM direct access code is compared to NextFlow. The remaining statements of
the method retrieve the available tasks (lines 4-5), selects a handler for the task (lines
6-7) and executes the handler (line 8).

void onNewMessage (String from, String message) {
ChargingProcess chargingProcess =

getProcessForParticipant (from);

List<String> availableTasks =

ExternalTaskHandler handler =
getExternalTaskHandler (availableTasks);

1

2

3

4

5 chargingProcess.getAvailableTasks ();
6

7

8 handler.executeTask(from, message, chargingProcess);
9

Listing 5.8. Dispatching messages using NextFlow

5.5.3 Providing Data

When using jBPM directly, it was necessary to rely on property boxes for declaring
variables in the jJBPM business process. Using NextFlow, it is only necessary to create
the class that represents the data structure used in the process. This class called
ChargingProcessData—was already mentioned in Section 5.5.2. Listing 5.9 shows the
code of this class, which basically consists of a traditional POJO class, i.e., a class that

contains only attributes and their respective getters and setters.

74 CHAPTER 5. EVALUATION

—_

class ChargingProcessData A
String from;
String to;
Integer value;
Boolean validRequest;
Boolean enoughCredit;
Boolean authorized;

//getters and setters

O 00 ~N O Ut = W N

Listing 5.9. Class that represents the process data in NextFlow

By using objects of this class, the information system can access the process

dataset using a strongly typed data structure.

5.5.4 Providing Behavior

The last component that must be created in the NextFlow’s implementation is the
callback class, which provides means to define behavior for tasks. Listing 5.10 shows the
class used for callback. Some parts were omitted for the sake of readability. Basically,

this class has a method for each task defined in the business process.

1 @Process("org.nextflow.example.payment.nextflow")

2 class ChargingCallback {

3

4 ChargingProcessData data;

5 ChargingProcess process;

6

7 public void requestPayment (String from, String message){
8 //provides the request payment behavior

9 b

10 public void checkCredit (){

11 //provides the check credit behavior
12 }

13 //other callback methods

14}

Listing 5.10. Callback class for the Charging System using NextFlow

In this section, the architecture used in NextFlow implementation was presented.
Basically, the following artifacts were created: the data class, the process interface, and
the process callback class. The onNewMessage method was implemented in a similar

way as in the jBPM implementation.

5.6. COMPARING NEXTFLOW AND DIRECT BPMS AcCCESS IMPLEMENTATIONS 75

5.6 Comparing NextFlow and Direct BPMS Access

Implementations

In the previous sections, we presented the architecture of our implementations using
direct JBPM and NextFlow access. Both implementations relied in the Application
Controller design pattern to handle the request [Alur et al., 2003]. Basically, the
controller (represented by a handler object) is selected by the onNewMessage method,
which retrieves the appropriate process and handler to actually process the request.

In jBPM implementation, it was needed to instrument the process definition
with data and behavior. To solve the problem of writing code in property boxes, an
architecture was used to callback the information system. With this architecture the
implementation of the task behavior was done using ScriptTaskHandler classes in the
information system.

In the NextFlow implementation, a data structure is provided by a traditional
POJO class. No configuration in XML or in property boxes is necessary. NextFlow
also provides an architecture that allows implementing tasks behavior in classes of the
information system. For this reason, we argue that NextFlow provides resources that
facilitate the integration between information systems and BPMSs, considering that
less effort is necessary to build an architecture when using the solution proposed in this
master dissertation. In this section, the actual code used in the jBPM implementation

is compared to the NextFlow one.

5.6.1 Creating a Connection with the Business Process Engine

In order to send messages to the BPMS engine a connection must be cre-
ated. In the jBPM implementation, this connection is represented by a
StatefulKnowledgeSession interface, while in NextFlow it is represented by the
WorkflowObjectFactory interface. Listing 5.11 shows the code that creates a jBPM
StatefulKnowledgeSession and Listing 5.12 shows the correspondent code to create

a NextFlow WorkflowObjectFactory.

1 StatefulKnowledgeSession kSession;

2 KnowledgeBuilder b = KnowledgeBuilderFactory.newKnowledgeBuilder ();
3 b.add(ResourceFactory.newClassPathResource("chargingsystem.bpmn"),
4 ResourceType.BPMN2) ;

5 KnowledgeBase kBase = b.newKnowledgeBase ();

6 kSession = kBase.newStatefulKnowledgeSession();

Listing 5.11. Creating a session using the JBPM API

76 CHAPTER 5. EVALUATION

1 WorkflowObjectFactory factory;
Configuration configuration =
new Configuration (" jwfc:jbpm:chargingsystem-nextflow.bpmn");

configuration.addCallbackClass (ChargingCallback.class);

[B R U]

factory = configuration.createFactory();

Listing 5.12. Creating a session using NextFlow

Despite the size, an important drawback of the jJBPM implementation is the fact
that it relies on specific JBPM APIs. In other words, there is not a standard interface
to interact with this BPMS. If we need to change the BPMS engine, the code in Listing
5.11 code must be changed. This fact does not happen with NextFlow implementation.
A change in the BPMS would imply only a change in a URL (line 3, Listing 5.12). Note
that in NextFlow’s code, we configure the callback class (line 4). When a process is
retrieved from the underlying jBPM engine, NextFlow automatically configures it with
the callback classes provided as parameter. This represents a significant reduction in
the effort to create a callback compared to the solution proposed in jBPM to achieve
similar results (where we needed to insert a method call in of each external task using

property boxes, as showed in Listing 5.5 of Section 5.4.4).

5.6.2 Starting a New Process

To start a new process in the jJBPM engine, the JbpmPhoneProcessManager class
provides a method called startNewChargingProcess, presented in Listing 5.13.
The created process is represented by a ProcessInstance object (lines 4-5). The
StatefulKnowledgeSession.startProcess method, besides the respective process id,
receives a map of parameters (line 5). There is a single parameter named manager con-
figured with the JbpmPhoneProcessManager (line 3). This manager object is the one
used by the callback code written in the process definition tasks, as already presented
in Listing 5.5.

1 ProcessInstance startNewChargingProcess () {
Map<String, Object> parameters = new HashMap<String, 0Object>();
parameters.put ("manager", (JbpmPhoneProcessManager) this);
ProcessInstance processInstance;

processInstance = kSession.startProcess (PROCESS_ID, parameters);

return processInstance;

N Oy ot = W N

Listing 5.13. Starting a process using jBPM

To start a process in NextFlow a start method is used, as showed in the Listing

5.14. Besides being a simple code, the object returned by this method contains business

5.6. COMPARING NEXTFLOW AND DIRECT BPMS ACCESS IMPLEMENTATIONS 77

methods, as defined in the ChargingProcess interface. Therefore, it is easier to call

tasks using this interface than using an specific BPMS API.

1 ChargingProcess startNewChargingProcess () {
2 return factory.start(ChargingProcess.class);

3 %
Listing 5.14. Starting a process using NextFlow

5.6.3 Checking the Owner of the Process

A required functionality in the Charging System is to retrieve the running process for
a given user. Listing 5.15 shows the code of the getProcessWithParticipant method

that implements this functionality using jBPM direct access.

1 WorkflowProcessInstance getProcessForParticipant(String p){
2 WorkflowProcessInstance selectedPI = null;

3 Collection<ProcessInstance> processInstances =

4 kSession.getProcessInstances ();
5 for (ProcessInstance pi : processInstances) {

6 WorkflowProcessInstance wpi = (WorkflowProcessInstance) pi;
7 String vFrom = (String) wpi.getVariable("from");

8 String vTo = (String) wpi.getVariable("to");

9 if (vFrom.equals(p) || vTo.equals(p)){

10 selectedPI = workflowProcessInstance;

11 }

12}

13 if (selectedPI == null){

14 selectedPI = startNewChargingProcess ();

15}

16 return selectedPI;

17}

Listing 5.15. Getting the correct process for a given user using jBPM API

Note that when retrieving the variable values from the process instance, several
type casts are necessary. Moreover, because the name of the variables are passed as
Strings, there is no type checking at compile time (lines 7 8). This code is different from
the NextFlow code showed in Listing 5.16. In NextFlow, the process is represented by
the ChargingProcess interface (lines 3-5). This interface has a getData method that
retrieves an object that represents the business data (line 7). Using this object it is
possible to retrieve the values of the business process data using compile time checking
constructions (lines 8-9). To summarize, in Listing 5.15 there are typecasts, that do

not appear in Listing 5.16.

78 CHAPTER 5. EVALUATION

1 ChargingProcess getProcessForParticipant (String p) {

2 ChargingProcess selectedCP = null;

3 List<ChargingProcess> processes = factory
4 .getRepository ()

5 .getRunningProcesses (ChargingProcess.class);
6 for (ChargingProcess cp : processes) {

7 ChargingProcessData data = cp.getData();
8 String vFrom = data.getFrom();

9 String vTo = data.getTo();

10 if (vFrom.equals(p) || vTo.equals(p)){

11 selectedCP = chargingProcess;

12 }

13}

14 if(selectedCP == null){

15 selectedCP = startNewChargingProcess ();
16}

17 return selectedCP;

18}

Listing 5.16. Getting the correct process for a given user using NextFlow

5.6.4 Executing Tasks

In this subsection we compare the communication between the BPMS and the informa-
tion system with respect to task execution. Examples of code that call and implement

task behavior are presented.

5.6.4.1 Request Payment Task

Listing 5.17 shows the code that executes the request payment task. It checks whether
the values are correct (lines 2 4), creates some parameters (lines 7 11) and then com-
plete the work item (lines 12-13). An work item represents a task that must be executed
in jJBPM. The variable results is a map that represents the values resultant of the
execution of this task. In jJBPM, result values are associated to process variables, as
showed in Figure 5.8. This code is written in a class, named RequestPaymentHandler,
that implements the ExternalTaskHandler interface (please, refer to Section 5.4.2 for
more information on this interface).
1 void executeTask(String from, String msg, Nodelnstance node){
Pattern pattern = Pattern.compile ("(\\d+) (\\d+)");
Matcher matcher = pattern.matcher (msg);

2

3

4 if (matcher .matches ()){

5 String to = matcher.group(1);

5.6. COMPARING NEXTFLOW AND DIRECT BPMS AcCCESS IMPLEMENTATIONS 79

6 String value = matcher.group(2);

7 Map<String, Object> results = new HashMap<String, 0Object>();
8 results.put ("r_from", from);

9 results.put("r_to", to);

10 results.put ("r_value", new Integer(value));

11 results.put("r_validRequest", true);

12 kSession.getWorkItemManager ()

13 .completeWorkItem(node.getWorkItemId (), results);
14 } else {

15 Map<String, Object> results = new HashMap<String, Object>();
16 results.put("r_from", from);

17 results.put ("r_validRequest", false);

18 kSession.getWorkItemManager ()

19 .completeWorkItem(node.getWorkItemId (), results);
20 }

21 %}

Listing 5.17. Executing an external task in jBPM

= Parameter Mapping @

Parameter Variable Add
r_to to

. i Remove
r_validRequest validRequest
r_from from
r_value value

OK] [Cancel

Figure 5.8. Mapping result parameters to process variables in jBPM

Each entry of the result map has a key and a value. Using the provided mapping,
the jJBPM engine sets the corresponded process variable with the value from the result
of the task. For example, the result r_from is mapped to the process variable from.
As a result, when the task finishes, the value in the result r_from is assigned to the
process variable from. It would be possible to explicitly set the process variables in
this code—instead of using mapped results—but it is not recommended because it is
not guaranteed that the task can be completed. If the task cannot be executed, the

process variables would be left in a inconsistent state.

80 CHAPTER 5. EVALUATION

The equivalent code in NextFlow implementation is shown in Listing 5.18. There,
the mapped interface is used to execute the task. Therefore, from the perspective of a
developer that just wants to execute a task, this is the only code required.
1 void executeTask(String from, String msg, ChargingProcess p) {

2 p.requestPayment (from, msg);

3}

Listing 5.18. Executing an external task in NextFlow

The actual behavior of the task is actually implemented in the callback class.
Listing 5.19 shows the callback code of the request payment task as implemented in
the ChargingCallback class. This code contains the logic of the request payment task.
First, it checks whether the message pattern is correct (lines 3-5); if it is, it sets the
values in the correspondent process variables (lines 8 10); otherwise, it configure the
process with an invalid request (line 12). Although in NextFlow the code is divided in
two classes we argue that it is actually more modular. This happens because there are
two perspectives involved: the programmer that wants some task to be executed and
the programmer that should implement the task behavior. The first programmer does
not need to know how the task is implemented, a characteristic that is not present in
the jJBPM implementation. It would be possible to partition the jJBPM code just like
in the NextFlow solution, but it would add extra complexity to the base architecture

that is already complex.

1 void requestPayment (String from, String message){

2 data.setFrom(from);

3 Pattern pattern = Pattern.compile ("(\\d+) (\\d+)");
4 Matcher matcher = pattern.matcher(message);
5 if (matcher .matches ()){

6 String to = matcher.group(1);

7 String value = matcher.group(2);

8 data.setTo(to);

9 data.setValue (new Integer (value));

10 data.setValidRequest (true);

11 } else {

12 data.setValidRequest (false);

13 }

14 2

Listing 5.19. Callback that provides the behavior for the request payment
external task in NextFlow
Another feature of the NextFlow code that it is worth to mention is the support

for compilation time checking. For example, instead of writing results.put("r_to",

5.6. COMPARING NEXTFLOW AND DIRECT BPMS ACCESS IMPLEMENTATIONS 81

to)., NextFlow supports a code like data.setTo(to), where data has the type

ChargingProcessData presented in Section 5.5.3.

5.6.4.2 Check Credit Task

The check credit task is an automatic task, i.e., it is executed by the business process
engine. Therefore, there is no need to call the task explicitly. Listing 5.20 shows
the code of the callback that handles this task in the jBPM implementation. The
chargingManager object (line 5) is an attribute of type ChargingManager, and it is
provided by the basic system. This method is called by the callback system created
for jBPM (explained in Section 5.4.4). Remember that when an automatic task is
executed it triggers the callback code (Listing 5.5). The callback code (Listing 5.6),

selects the appropriate handler for the current task and executes it.

—_

void executeScriptTask(NodeInstance node) {
WorkflowProcessInstance process = node.getProcessInstance();
Integer value = (Integer) process.getVariable("value");
String to = (String)process.getVariable("to");
Integer credit = chargingManager.getCreditFor (to);
boolean enoughCredit = credit >= value;

process.setVariable("enoughCredit", enoughCredit);

o ~N & Ut ok W N

}
Listing 5.20. Callback that provides the behavior for the credit checking task
in jJBPM
Listing 5.21 shows the code for the NextFlow implementation. The checkCredit

method is implemented in the ChargingCallback class.

—_

void checkCredit (){

2 Integer credit = chargingManager.getCreditFor (data.getTo());
3 data.setEnoughCredit (credit >= data.getValue());

4}

Listing 5.21. Callback that provides the behavior for the credit checking task

in NextFlow

5.6.4.3 Verify Authorization Split

The charging process definition has split activities that requires an external logic to
determine the correct path the business process must take. One of those splits is the
verify authorization. In this split, the flow must send a deny message in case the
user has not authorized the transfer or execute the transaction otherwise. Because

the split is usually a boolean checking, we have not created a callback infrastructure

82 CHAPTER 5. EVALUATION

in the jBPM implementation. Instead, we used the available resources of the jBPM
tool. Figure 5.9 shows the configuration required to set the wverify authorization split
in jJBPM. This split has two possible outgoing paths and each one must be configured
with the respective boolean expression.

s — N
~ = Edit Constraints [=] —
To node Execute Transaction: ®
fralidReque: Me ode Send Deny Message: z N
@ [5) Send Deny Message |5 Execute Transaction
v
- -
= Constraint editor g = Constraint editor
Name: Name:
Priority: 0 Priority: 1 @
1| Type: Dialect: Type: Dialect: java v
el : oo Eator |
= || Textual Editor I Textual Editor
_{ ||| return authorized != null &8& authorized; Ralus return authorized == null || !authorized;
1 L
Defaul
[ok][conca | ;’:’T [ok][conca |

Figure 5.9. Split activity (verify authorization) configuration in jBPM

NextFlow provides, by means of its callback architecture, ways to set the paths
that a split must follow. Listing 5.22 shows the code in a callback class that handles
the mentioned split decision. The type Task is an enum that lists the available tasks

in the charging process.

1 Task verifyAuthorization(){

2 if (data.isAuthorized ()){

3 return Task.EXECUTE_TRANSACTION;
4 } else {

5 return Task.SEND_DENY_MESSAGE;

6 }

7}

Listing 5.22. Callback that handles a split task in NextFlow

5.7. THREATS TO VALIDITY 83

5.7 Threats to Validity

In this chapter, the NextFlow solution was evaluated by comparing it with an imple-
mentation based on direct BPMS access (JBPM). The comparison with just one BPMS
engine constitutes an external validity threat as other BPMSs may have different fea-
tures and characteristics. However, we argue that the abstractions used in NextFlow
were created based on other studies, like studies from Aalst [Aalst, 1996], on the WIMC
Interfaces 2 and 3 [WfMC, 1999|, and on BPMN specifications [OMG, 2011]. Neverthe-
less, even if we regard NextFlow as a solution specific to jBPM, our work shows that it
is possible to map business process elements to high-level object-oriented abstractions,
which is the main contribution of this master dissertation. Finally, the problems dis-
cussed in the jJBPM implementation are also present in other BPMSs. For example, in
YAWTL, another BPMS tool, process variables are declared in a similar way as in jBPM
[Aalst et al., 2004]. Also, YAWL relies on services to configure the actual behavior of
the tasks, which also requires implementation effort.

Another threat to validity is that both the Charging System and the NextFlow
solution were implemented by ourselves. This fact can compromise the evaluation,
because one can argue that a business process suitable for NextFlow could have been
used. In our defense, we argue that all process elements provided by jBPM exist in the

Charging Process®, and a variety of situations were tested.

5.8 Concluding Remarks

The evaluation of NextFlow presented in this chapter can be divided in two parts. The
first is the effort to build an architecture to support the integration of business process
systems with information systems. In this case, we presented a qualitative analysis
showing that the solution provided by NextFlow solves many problems presented in the
integration of such systems. As a result, the effort necessary to create an architecture
is reduced when using NextFlow in comparison to direct BPMS access.

Besides a simple architecture, NextFlow provides strongly typed constructs. In-
terfaces and classes with methods representing elements from the business process
allows the information system code to be oblivious about business process details. In
other words, much accidental complexity issues (like tasks and node handling) are

removed.

3By process elements we mean elements that may affect the process flow. We are not including
here organizational elements, like subflows or lanes.

84 CHAPTER 5. EVALUATION

Using NextFlow the final solution is also more modular. For example, code that
contains business logic can be implemented in the information system (using callback
class), task triggering is separated from task behavior (using process interfaces and

callback class), and data is mapped to strongly typed structures (data class).

3

Chapter 6

Conclusions

6.1 Contributions

In this master dissertation, we tackled the problems faced when integrating information
systems and BPMSs. The contributions of the NextFlow mapping framework proposed

in our work are as follows:

e Object-Business Process Mapping Framework: We proposed in this work a new
type of mapping framework, called object-business process mapping. The solu-
tion we have proposed shares characteristics with popular object-relational map-
ping (ORM) frameworks, which are mapping systems used to represent relational
database elements as object-oriented elements. We have proposed a mapping
framework, implemented and evaluated it using an information system with a

variety of situations common in business process scenarios.

e Simple API: NextFlow provides components that abstract out BPMS specific im-
plementations. Therefore, using NextFlow the problem of having different APIs
for different BPMSs is addressed. Basically, NextFlow provides a unique API for
client systems to connect to BPMSs. Moreover, the API provided by NextFlow
supports the communication with BPMS in a way that is more simple than when
using the current APIs provided by BPMSs. Regarding its architecture, NextFlow
is modularized in two layers, each one providing its own contributions. The WFC
layer supports the usage of business process elements without referencing specific
BPMS APIs. The WFC layer is a complete software solution that can be used to
manage process definitions in an implementation independent way. The second

layer—OWM—is used to trigger business process operations. By using this layer,

85

86

CHAPTER 6. CONCLUSIONS

a client system can rely on traditional object-oriented interfaces and methods,

and therefore it is oblivious about the existence of an underlying BPMS.

A set of mapping rules to represent business processes using object-oriented ab-
stractions: NextFlow provides rules that allows the mapping of various aspects of
business process into object-oriented abstractions. We have found only one work
in the literature with the same objective [Joosten and Purao, 2002|. However, this
work only outlines a conceptual model establishing how the components should
be mapped. Moreover, it does not include an implementation or evaluation with

a real system.

Reuse of existing solutions: Different of other solutions, NextFlow reuses existing
BPMS languages, notations, and APIs. Moreover, the proposed solution does not
change modern object-oriented architectures nor the development of business

processes.

Practical Evaluation: Most of works in the literature indicate the problems faced
when integrating business process and information systems only in theoretical
terms. In this master dissertation, we illustrated the difficulties of integrating

business processes and information systems using a small but practical system.

Implementation: In this master dissertation, we have implemented six modules:
two modules corresponding to the NextFlow layers (WFC and OWM), a driver
for the jJBPM BPMS, and an information system with one basic module and
two modules representing each of the evaluated solutions (NextFlow and jBPM).
When designing and implementing such modules, several aspects relevant in soft-
ware engineering, such as modularization and cohesion, were considered. Our
implementation also makes use of several advanced object-oriented techniques,
including loading classes at runtime, creation of bytecode sequences and reflec-

tion.

6.2 Comparison With Related Work

In Chapter 2 we presented the works related to our solution. In this section, we compare

such works with NextFlow.

6.2. COMPARISON WITH RELATED WORK 87

6.2.1 Business Process Languages and APls

Existing BPMSs rely on different notations and APIs to design business process and
to integrate them with information systems. However, NextFlow is not directly com-
parable to BPMS notations, but to the APIs they provide. We argue that besides
providing independency of implementation, NextFlow relies on a simple API than the
APIs found on existing BPMSs.

Another common characteristic of BPMSs is the implementation of code in the
business process, sometimes using property boxes. This characteristic is not desirable,
because BPMSs are not IDEs and implementing code in property boxes hampers co-
hesion. To tackle this problem, NextFlow allows the implementation of extra behavior
required by business process in classes of the information system, using traditional
development tools.

NextFlow assumes a scenario where we need to integrate an information system
with a BPMS, which is not the typical scenario when using BPEL. Generally in BPEL,
coarse-grained business processes are constructed to integrate different systems. In this
case, NextFlow may not be the most recommended framework. More specifically, the
web services integration layer present in BPEL provides advantages that NextFlow can

not provide, as NextFlow currently targets only Java-based systems.

6.2.2 API Standards

The Workflow Management Coalition (WfMC) has proposed a standard API for inter-
operability between BPMSs and other tools, called WAPI. NextFlow actually has some
interfaces that also exist in WAPI. However, the differences are as follows: in NextFlow,
we implemented the abstract API and provided means to connect concrete implemen-
tations. We provide a data manipulation API, while the WAPI documentation says
that it has not completely defined the data manipulation mechanisms [WfMC, 1999].
Finally, the architecture used by NextFlow is different, in the way that NextFlow does
not require that BPMS API implementors follows a unique specification.

WAPI is meant to be implemented by BPMSs, therefore forcing the BPMS APIs
to follow a programming interface. However, none of the major players follow this
specification |Aalst et al., 2004]. NextFlow uses a different approach, as it does not
require the BPMS to implement any specific API. Instead, NextFlow relies on drivers
to connect to existing APIs provided by BPMSs. We have successfully implemented a
driver for jBPM, which at least is a first evidence that our solution works with BPMSs

widely used by the industry.

88 CHAPTER 6. CONCLUSIONS

6.2.3 Object-Oriented Business Process Abstractions

The use of object-oriented abstractions to create business processes has already been
proposed in other works. However, they usually do not consider the use of traditional
BPMSs. MicroWorkflow for example suggests the implementation of business process
using object-oriented components that can be composed to provide a business process
engine API [Manolescu, 2001|. Therefore, MicroWorkflow loses many well-known ben-
efits of business process languages, such a graphical notation and the participation of
business analysis in the design of business process. WebWorkFlow goes further and
replaces the programming language used by its own domain-specific language [Hemel
et al., 2008|. We argue that NextFlow maintains the information system and the busi-

ness processes unchanged, providing only an integration layer.

6.3 Further Work

NextFlow relies on drivers to connect to real BPMS engines. We have implemented a
driver for the jJBPM API, a popular BPMS tool. However, in other to use NextFlow
with other BPMS new drivers must be implemented. It is possible that when new
drivers are developed for NextFlow, details of a BPMS not compatible with NextFlow
arise. In this case, the NextFlow Model will have to be changed to support the elements
not initially considered.

In particular cases, data type conversions are required by NextFlow, a feature
that must be implemented by the drivers. Therefore, we suggest a study to analyze
the data types generally used by business process. This study may help to reveal for
example a possible generic implementation for type converters. The goal should be to
remove this functionality from the driver, therefore facilitating its implementation.

Evaluation activities are always a concern that demands attention. In our current
evaluation, we implemented a complete information system, which includes various
aspects common to business processes. However, we acknowledge that it is important
to study other business process scenarios and evaluate NextFlow in each of them. The
evaluation of NextFlow using Workflow Patterns [Aalst and Hofstede, 2002] may be a

good starting point.

Bibliography

Aalst, W. (1996). Three good reasons for using a petri-net-based workflow management
system. In Information and Process Integration in Enterprises (IPIC), pages 179--
201.

Aalst, W. (1998). The application of Petri nets to workflow management. Journal of
Circuits, Systems, and Computers, 8(1):21--66.

Aalst, W., Aldred, L., Dumas, M., and Hofstede, A. (2004). Design and implementation
of the YAWL system. In 16th International Conference on Advanced Information
Systems Engineering (CAiSE), volume 3084, pages 142--159.

Aalst, W., Hee, K., Hofstede, A., Sidorova, N., Verbeek, H., Voorhoeve, M., and Wynn,
M. (2011). Soundness of workflow nets: classification, decidability, and analysis.
Formal Aspects of Computing, 23(3):333--363.

Aalst, W. and Hofstede, A. (2002). Workflow patterns: on the expressive power of
(petri-net-based) workflow languages. In 4th Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools (CPN), pages 1--20.

Aalst, W. and Hofstede, A. (2005). YAWL: yet another workflow language. Information
Systems, 30(4):245--275.

Aalst, W., Hofstede, A., and Weske, M. (2003). Business process management: A
survey. In Ist International Conference on Business Process Management (BPM),

pages 1--12.

Aalst, W. and Lassen, K. (2005). Translating workflow nets to BPEL. Research School

for Operations Management and Logistics.

Adam, N.; Atluri, V., and Huang, W. (1998). Modeling and analysis of workflows using
petri nets. Journal of Intelligent Information Systems, 10(2):131--158.

89

90 BIBLIOGRAPHY

Alonso, G., Agrawal, D., Abbadi, A., and Mohan, C. (1997). Functionality and limi-
tations of current workflow management systems. IEEFE Ezxpert Intelligent Systems
and their Applications, 12(5):632--635.

Alur, D.,; Crupi, J., and Malks, D. (2003). Core J2EE patterns: best practices and

design strategies. Prentice Hall.

Arnold, K., Gosling, J., and Holmes, D. (2005). The Java Programming Language.
Addison-Wesley, 4th edition.

Borger, E. (2011). Approaches to modeling business processes: a critical analysis of
BPMN, workflow patterns and YAWL. Software and Systems Modeling, pages 1--14.

Brooks, F. P. (1987). No silver bullet: Essence and accidents of software engineering.
IEEE Computer, 20(4):10--19.

Cardoso, J., Bostrom, R. P., and Sheth, A. (2004). Workflow management systems and
ERP systems: Differences, commonalities, and applications. Information Technology
and Management, 5(3):319--338.

Fowler, M. (2003). Patterns of enterprise application architecture. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design patterns: elements

of reusable object-oriented software. Addison-Wesley.

Gelernter, D. (1985). Generative communication in linda. ACM Transactions on Pro-

gramming Languages and Systems, 7(1):80--112.

Goncalves, A. (2010). Beginning Java EE 6 Platform with GlassFish 3, chapter Object—
Relational Mapping, pages 61--121. Springer.

Havey, M. (2005). Essential business process modeling. O'Reilly.

Hemel, Z., Verhaaf, R., and Visser, E. (2008). WebWorkFlow: an object-oriented
workflow modeling language for web applications. In 11th Model Driven Engineering
Languages and Systems (MODELS), pages 113--127.

Hofstede, A., Aalst, W., and Adams, M. (2009). Modern Business Process Automation:
YAWL and its support environment. Springer.

Hofstede, A., Adams, M., et al. (2011). YAWL User Manual.
http://www.yawlfoundation.org/pages/support /manuals.html.

BIBLIOGRAPHY 91

Hollingsworth, D. (1995). Workflow management coalition: ~ The work-
flow reference model. http://www.wfmc.org/index.php?option=com docman&
task=doc__download&gid=92&Itemid="72.

Joosten, S. and Purao, S. (2002). A rigorous approach for mapping workflows to
object-oriented is models. Journal of Database Management (JDM), 13(4):1--19.

Jordan, D., Evdemon, J., et al. (2007). Web services business process execution lan-
guage version 2.0 (WS-BPEL). http://docs.oasis-open.org/wsbpel /2.0/0S /wsbpel-
v2.0-OS.html.

Lawrence, P., editor (1997). Workflow handbook 1997. John Wiley & Sons.

Manolescu, D. (2001). Micro-workflow: A Workflow Architecture Supporting Compo-
sittonal Object-Oriented Software Development. PhD thesis, University of Illinois.

Muth, P., Weikenfels, J., Gillmann, M., and Weikum, G. (1999). Integrating light-
weight workflow management systems within existing business environments. In
15th International Conference on Data Engineering (ICDE), pages 286-293.

OMG (2011). BPMN - Business Process Model and Notation Version 2.0.
http://www.omg.org/spec/BPMN/2.0/PDF. Version 2.

Peterson, J. (1977). Petri nets. ACM Computing Surveys, 9(3):223--252.

Petri, C. (1962). Kommunikation mit Automaten. PhD thesis, Institut fiir Instru-
mentelle Mathematik.

Puhlmann, F. (2006). Why do we actually need the pi-calculus for business process
management? In 9th International Conference on Business Information Systems
(BIS), volume 85, pages 77—89.

Reimann, P.; Schwarz, H., and Mitschang, B. (2011). Design, implementation, and
evaluation of a tight integration of database and workflow engines. Journal of Infor-
mation and Data Management (JIDM), 2(3):353-368.

Sivaraman, E. and Kamath, M. (2002). On the use of petri nets for business process
modeling. In 11th Industrial Engineering Research Conference (IERC).

Smith, H. and Fingar, P. (2003). Workflow is just a pi process. BPTrends.

Vergidis, K., Tiwari, A., and Majeed, B. (2008). Business process analysis and opti-
mization: beyond reengineering. IEEE Transactions on Systems, Man, and Cyber-
netics, Part C: Applications and Reviews, 38(1):69--82.

92 BIBLIOGRAPHY

WEMC (1999). Workflow Management Application Programming Interface (Interface
2 & 3) Specification. http://www.wfme.org/Download-document/ WFMC-TC-1009-
Ver-2-Workflow-Management-API-23-Specification.html.

Wohed, P., Russell, N., Hofstede, A., Andersson, B., and Aalst, W. (2009). Patterns-
based evaluation of open source BPM systems: The cases of jBPM, OpenWFE, and
Enhydra Shark. Information and Software Technology, 51(8):1187--1216.

Youakim, B. (2008). Service-oriented workflow. Journal of Digital Information Man-
agement, 6(1):118--127.

